

Subduction Complex Provenance redefined: modern sands from the Indo-Burman-Andaman-Nicobar Ridge and Barbados Island

Mara Limonta (1), Alberto Resentini (1), Sergio Andò (1), Giovanni Vezzoli (1), Pinaki C. Bandopadhyay (2), Yani Najman (3), Maria Boni (4), Thilo Bechstädt (5), and Eduardo Garzanti (1)

(1) Department of Earth and Environmental Sciences, Università di Milano-Bicocca, 20126 Milano, Italy

(m.limonta1@campus.unimib.it), (2) Geological Survey of India, Northern Region, Aliganj, Lucknow 226 024, India., (3)

Department of Environmental Science, Lancaster University, LA1 4YQ Lancaster, UK., (4) Dipartimento di Scienze della Terra, Università di Napoli, 80134 Napoli, Italy, (5) Geological Institute (Petroleum Geology), Jagiellonian University, Kraków, Poland.

Subduction complexes large enough to be exposed subaerially and to become significant sources of terrigenous detritus are formed by tectonic accretion above trenches choked with thick sections of remnant-ocean turbidites. They thus need to be connected along strike to a large Alpine-type or Andean-type orogen, where huge volumes of orogenic detritus are produced and conveyed via a major fluvio-deltaic system to the deep sea (Ingersoll et al., 2003).

We investigated sediment generation and recycling in the Indo-Burman-Andaman-Nicobar subduction complex, representing the archetype of such settings in the eastern prolongation of the Himalayan collisional system. "Subduction Complex Provenance" is composite, and chiefly consists of detritus recycled from largely turbiditic parent rocks (Recycled Clastic Provenance), with local supply from ultramafic and mafic rocks of forearc lithosphere (Ophiolite Provenance) or recycled paleovolcanic to neovolcanic sources (Volcanic Arc Provenance; Garzanti et al., 2007). In order to specifically investigate the effect of recycling, we characterized the diverse detrital signatures of Cenozoic sandstones deposited during subsequent stages of "soft" and "hard" Himalayan collision and exposed from Bangladesh to the Andaman Islands, and discuss the reasons for compositional discrepancies between parent sandstones and their recycled daughter sands.

A companion study was carried out with the same methodologies, rationale and goals on Barbados Island, one of the few other places where a large accretionary prism is subaerially exposed. Also modern Barbados sands are largely multicyclic, reflecting mixing in various proportions of detritus from the basal Scotland Formation (sandstones and mudrocks), their stratigraphic and tectonic cover, the Oceanic Formation (quartzose turbidites and deep-water biogenic oozes including radiolarite), and from the Pleistocene calcarenite and reefal cap, as well as from volcanic layers ultimately derived from the Lesser Antilles. Mixing of detritus recycled from orogen-derived turbidites transported long distance with detritus from oceanic mélange, pelagic sediments and younger calcareous cap rocks and in addition volcaniclastic products thus redefines the diagnostic mark of Subduction Complex Provenance as quite distinct from the original definition by Dickinson and Suczek (1979).

REFERENCES

Dickinson, W.R., and Suczek, C.A., 1979, Plate tectonics and sandstone composition: American Association Petroleum Geologists Bulletin, 63, 2164-2172.

Garzanti, E., Doglioni, C., Vezzoli, G., and Andò, S., 2007, Orogenic belts and orogenic sediment provenances: Journal of Geology, 115, 315-334.

Ingersoll, R.V., Dickinson, W.R., and Graham, S.A., 2003, Remnant-ocean submarine fans: largest sedimentary systems on Earth, [in] Chan, M.A., and Archer, A.W., eds., Extreme Depositional Environments: Mega End Members in Geologic Time: Geological Society of America, Special Paper 370, 191-208.