

Intercalibration of column-averaged methane from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change: An Update

Andreas Ostler (1), Ralf Sussmann (1), Frank Forster (1), Markus Rettinger (1), Thomas Blumentrost (2), Nicholas Deutscher (3,4), Susanne Dohe (2), David Griffith (3), James Hannigan (5), Frank Hase (2), Nicholas Jones (3), and Prabir Patra (6)

(1) Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany, (2) Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, Germany, (3) University of Wollongong, New South Wales, Australia, (4) University of Bremen, Germany, (5) Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA, (6) Research Institute for Global Change, JAMSTEC, Yokohama, 236-0001, Japan

We present the intercalibration of dry-air column-averaged mole fractions of methane (XCH_4) retrieved from solar Fourier transform infrared (FTIR) measurements of the Network for the Detection of Atmospheric Composition Change (NDACC) in the mid-infrared (MIR) versus near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON). The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany ($47.48^\circ\text{N}, 11.06^\circ\text{E}$, 743 m a.s.l.) and Wollongong, Australia ($34.41^\circ\text{S}, 150.88^\circ\text{E}$, 30 m a.s.l.).

Direct comparison of the retrieved MIR and NIR XCH_4 time series for Garmisch shows a quasi-periodic seasonal bias leading to a standard deviation ($stdv$) of the difference time series (NIR-MIR) of 7.2 ppb. After reducing time dependent a priori impact by using realistic site- and time-dependent ACTM-simulated profiles as a common prior, the seasonal bias is reduced ($stdv = 5.2$ ppb). A linear fit to the MIR-NIR scatter plot of monthly means based on same-day coincidences does not show a significant intercept, and the MIR/NIR intercalibration factor is found to be close to ideal within 2 sigma uncertainty, i.e. 0.9996(8). The difference time series (NIR-MIR) do not show a significant trend. The same basic findings hold for Wollongong. In particular an overall MIR/NIR intercalibration factor close to the ideal 1 is found within 2 sigma uncertainty. Differently to Garmisch, the original Wollongong MIR and NIR data can be jointly used without using a common a priori because of the less pronounced (southern-hemisphere) seasonal cycle.

In addition the study has been extended by the MIR and NIR measurements of the stations Karlsruhe, Germany ($49.1^\circ\text{N}, 910^\circ\text{E}$, 110 m a.s.l.) and Izana, Spain ($28.30^\circ\text{N}, 16.48^\circ\text{W}$, 2370 m a.s.l.).

Our results suggest that it is possible to set up a harmonized NDACC and TCCON XCH_4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.