

The continental Etirol-Levaz slice (Western Alps, Italy): Tectonometamorphic evolution of an extensional allochthon

Kathrin Ewerling, Gerrit Obermüller, Frederik Kirst, Nikolaus Froitzheim, Thorsten Nagel, and Sascha Sandmann
University of Bonn, Steinmann-Institut, Bonn, Germany (ewerling@uni-bonn.de)

The Etirol-Levaz slice (ELS) in the western Valtournenche of Italy is a continental fragment trapped between two oceanic units, the eclogite-facies Zermatt-Saas Zone in the footwall and the greenschist-facies Combin Zone in the hanging wall. It has been interpreted as an extensional allochthon derived from the Adriatic continental margin and stranded inside the Piemont-Ligurian oceanic domain during Jurassic rifting (Dal Piaz et al., 2001; Beltrando et al., 2010). The slice consists of Variscan high-grade gneisses, micaschists and metabasics overprinted under eclogite-facies conditions during Early Tertiary Alpine subduction.

Eclogites generally consist of garnet + omphacite \pm epidote \pm amphibole \pm phengite \pm quartz. We investigate their metamorphic history using equilibrium phase diagrams, mineral compositions, and textural relations between prograde, peak, and retrograde phases. In sample FD328, garnets have compositions of Alm52-61 Grs18-41 Prp5-22 Sps0.5-2 and typical growth zoning. Some garnet grains are brittlely fractured, strongly corroded and overgrown by epidote. Amphibole occurs as a major phase in the matrix and shows a progressive evolution from glaucophane in the core to pargasitic hornblende towards the rim. Sample FD329 with a particular Ca-rich bulk composition (18.3 wt% Ca) displays two distinct garnet generations. Perfectly euhedral cores show compositions of Grs42-45 Alm47-51 Prp3-6 Sps2-7 and typical prograde growth zoning. These cores are overgrown by irregularly shaped rims characterised by an initial rise in Mn and the Fe-Mg ratio. Omphacite in this sample with jadeite-contents of 19-28 mol% apparently has been fractured and annealed by jadeite-poor (7-12 mol%) omphacite suggesting brittle behaviour at eclogite-facies conditions or two high-pressure stages with lower metamorphic conditions in between.

We discuss whether the ELS experienced the same monocyclic metamorphic history as the Zermatt-Saas Zone or not. Some of our observations suggest that the ELS experienced two independent stages of high-pressure metamorphism during the Alpine orogeny, e.g. as proposed by Rubatto et al. (2011) for the Sesia Nappe. A lower-pressure stage in between might have been associated with brittle fracturing of high-pressure phases like garnet, glaucophane, and omphacite while the second generations of these minerals might indicate a new stage of increasing pressures and/or temperatures.

References

Beltrando, M., Rubatto, D. & Manatschal, G. (2010): From passive margins to orogens: The link between ocean-continent transition zones and (ultra)high-pressure metamorphism. *Geology*, 6, 559-562.

Dal Piaz, G.V., Cortiana, G., Del Moro, A., Martin, S., Pennacchioni, G. & Tartarotti, P. (2001): Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt-Saas ophiolite, western Alps. *Int. J. Earth Sci.*, 90, 668-684.

Rubatto, D., Regis, D., Hermann, J., Boston, K., Engi, M., Beltrando, M. & McAlpine, S.R.B. (2011): Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. *Nature Geoscience*, 4, 338-342.