

Global ocean CaCO_3 -cycle models: are they fit for ocean acidification research?

Wolfgang Koeve, Olaf Duteil, and Andreas Oschlies

GEOMAR, Helmholtz Zentrum für Ozeanforschung, Biogeochemical Modelling, Kiel, Germany (wkoeve@geomar.de, +49 1212-5 1061 8829)

Ocean biogeochemical models are routinely applied to assess the net global impact of ocean acidification and warming on pelagic CaCO_3 cycling. The standard method to evaluate such models is to compare the distributions of either alkalinity or the CaCO_3 saturation horizon with respective observations. However, alkalinity, basically the charge balance of the major constituents of seawater, has a large conservative, non-biogeochemical component and deficient representation of ocean physics (circulation, evaporation and precipitation) can strongly impact on a model's alkalinity distribution. Likewise, a model's CaCO_3 saturation horizon is affected by complex interactions of ocean physics (e.g. T, S and CO_2 equilibrium conditions in outcrop regions) and integrated effects of the organic tissue pump and last, but not least, the patterns of CaCO_3 production and dissolution. Here we apply a global ocean biogeochemical model run into preindustrial steady state and featuring a number of idealized tracers, which capture explicitly the model's CaCO_3 dissolution signal, the effect from organic matter remineralisation on the carbon cycle, and the various preformed properties (O_2 , DIC, alkalinity) and their disequilibria. In a twin-experiment approach we compare the suitability of a variety of potential measures of the CaCO_3 cycle, including bulk alkalinity, potential alkalinity, TA^* , saturation horizon. We in particular demonstrate the sensitivity of some of these apparent measures of biogeochemical processes to the differences in model and ocean physics. Building on our twin-experiment we briefly analyse three OCMIP5 models and suggest that state-of-the-art global ocean CaCO_3 cycle models may be largely unconstrained in general and await careful data-based evaluation.