

Lowered water table level decreases boreal mire NECB – a question of increased decomposition or decreased photosynthesis?

Mats Nilsson (1), Matthias Peichl (1), Jörgen Sagerfors (2), and Mikael Ottosson-Lofvenius (1)

(1) Swedish University of Agricultural Sciences, Department of Forest Ecology nad Management, Sweden
(mats.b.nilsson@sek.slu.se), (2) Swedish University of Agricultural Sciences, Unit for Field-based Forest Research, Sweden

The fundamental prerequisite for development and maintenance of mire ecosystems is a positive water balance maintaining a water table level close to the soil surface. One potential effect of climate change at higher latitudes is decreased positive water balance, i.e. increased evapotranspiration and/or decreased precipitation during the growing season leading to a lowered water table level. A lowered water table level is well known to reduce both the net ecosystem exchange (NEE) and most likely also the Net Ecosystem Balance (NECB). Most commonly a reduced NEE is interpreted as resulting from increased respiration. Therefore, a water table draw down is often viewed as a severe threat to the large long-term carbon stores occurring in high latitude peatlands. We used eddy covariance derived data on NEE from a high latitude mire in Northern Sweden during a year with severe drought during the growing season to separate the effects between photosynthesis and ecosystem respiration. The long term annual average NEE at the site is ~ 59 g C m $^{-2}$ yr $^{-1}$ which during the year with summer drought was reduced to 17 g C m $^{-2}$ yr $^{-1}$ resulting in a NECB not different from zero. Detailed analyses of the diurnal variation in NEE as well as ordinary NEE-partitioning into gross photosynthesis and respiration respectively revealed a drastic decrease in daytime CO $_2$ uptake while the nighttime CO $_2$ emission hardly was affected at all. Thus, for this widespread type of mire the most significant direct effect of severe droughts is reduced photosynthesis rather than increased respiration.