

Intrusion of coastal waters into the pelagic eastern mediterranean: in situ and satellite-based characterization

Shai Efrati (1), Yoav Lehahn (2,3,4), Eyal Rahav (5), Nurit Kress (6), Barak Herut (6), Isaac Gertman (6), Ron Goldman (6), Tal Ozer (6), Michael Lazar (4), and Eyal Heifetz (2)

(1) The Dr. Moses Strauss Department of Marine Geosciences, University of Haifa, Mt. Carmel, 31905, Israel., (2) Dept. of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv 69978, Israel, (3) Dept. of Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel, (4) Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques, IPSL, Université Pierre et Marie Curie, BC 100, 4 place Jussieu, 75005 Paris, France, (5) Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel, (6) Israel Oceanographic Limnological Research, The National Institute of Oceanography. P.O.Box 8030, Tel Shikmona, Haifa 31080, Israel

A combined dataset of near real time multi-satellite observations and in situ measurements from a high resolution survey, is used for characterizing physical-biogeochemical properties of a patch stretching from the coast to the open sea in the Levantine basin of the eastern Mediterranean. Spatial analysis of the combined dataset indicates that the patch is a semi-enclosed system, bounded within the mixed layer and separated from ambient waters by transport barriers induced by horizontal stirring. As such, the patch is characterized by physical-biogeochemical properties that significantly differ from those of the waters surrounding it, with lower salinity, and higher temperatures, concentrations of silicic acid and chlorophyll-a, and abundance of *Synechococcus* and *Picoeukaryotes* cells. Based on estimates of patch dimensions (\sim 40 km width and \sim 25 m depth) and propagation speed (\sim 0.09 m/sec), the volume flux associated with the patch is found to be in the order of 0.1 Sv. Our observations suggest that horizontal stirring by surface currents is likely to have an important impact on the ultra-oligotrophic Levantine basin ecosystem, through 1) transport of nutrients and coastal derived material, and 2) formation of local, dynamically isolated, niches. In addition, this work provides a satellite-based framework for planning and executing high resolution sampling strategies in the interface between coast and the open sea.