

A 300 years environmental and climate archive for western Spitsbergen from Holtedahlfonna ice core

Emilie Beaudon (1), John Moore (1,2), Tõnu Martma (3), Veijo Pohjola (4), Roderik Van de Wal (5), Jack Kohler (6), and Elisabeth Isaksson (6)

(1) Arctic Centre, Finland (ebeaudon@ulapland.fi), (2) Colleges of Global Change and Earth System Science, Beijing Normal University (john.moore.bnu@gmail.com), (3) Institute of Geology, Tallinn University of Technology (tonu.martma@gi.ee), (4) Department of Earth Sciences, Uppsala University (veijo.pohjola@geo.uu.se), (5) Institute for Marine and Atmospheric research Utrecht, Utrecht University (r.s.w.vandewal@uu.nl), (6) Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromsø (jack.kohler@npolar.no; elisabeth.isaksson@npolar.no)

An ice core extracted from Holtedahlfonna ice cap, the most extensive in western Spitsbergen, was analyzed for major ions and spans the period 1700-2005. The leading EOF component is correlated with an indicator of summer melt ($\log ([\text{Na}^+]/[\text{Mg}^{2+}])$) from 1850 and shows that almost 50% of the variance can be attributed to seasonal melting since the beginning of the industrial revolution. Percolation or diffusion disturbs the annual stratigraphy allowing paleoclimate interpretation of the chemical record only at decadal resolution. The Holtedahlfonna $\delta^{18}\text{O}$ value is less negative than that in the more easterly Lomonosovfonna ice core suggesting that moist air masses originate from a closer source most likely the Greenland Sea. During the Little Ice Age lower methansulfonic acid (MSA) concentration and MSA non-sea salt sulfate fraction is consistent with the Greenland Sea as the main source for biogenic ions in the ice core. Ammonium concentrations rise from 1880, which may result from the warming of the Greenland Sea or from zonal differences in atmospheric pollution transport over Svalbard. During winter neutralized aerosols are trapped within the tropospheric inversion layer which is usually weaker over open seas than over sea ice placing Holtedahlfonna within the inversion more frequently than Lomonosovfonna.