Source- and degradation-diagnostic of colloidal organic matter exported by rivers across the Eurasian Arctic margin

Emma Karlsson (1,2), Johan Gelting (1), Tommaso Tesi (1,3), Bart van Dongen (7), Martin Kruså (1), Jorien Vonk (6,8), Laura Sanchez-Garcia (9), Igor Semiletov (4,5), Alexander Charkin (4), Oleg Dudarev (4), Örjan Gustafsson (1,2)

(1) Department of Applied Environmental Science (ITM), Stockholm University, (2) Bert Bolin Centre for Climate Research (BBCC), Stockholm University, (3) Istituto di Scienze Marine-CNR, Bologna, Italy, (4) Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, Russia, (5) International Arctic Research Center, University Alaska Fairbanks, Fairbanks, AK, USA, (6) ETH Zürich, Geological Institute, Zürich, Switzerland, (7) School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK, (8) Utrecht University, Dept of Earth Sciences, Utrecht, The Netherlands, (9) Institut Català de Ciències del Clima IC3, Barcelona, Spain

Both models and in-situ observations indicate that the Arctic watersheds will experience a significant increase in temperature, resulting in higher runoff and remobilization of the vast carbon reservoirs currently held stable under frozen conditions. However, the sources and degradability of the dissolved organic carbon (DOC) released to this aquatic land-ocean conduit in high latitude regions is still poorly constrained. For example, there is a particular lack in our understanding of the fate of the DOC once it enters the Arctic Ocean. This study therefore investigated the compositional changes of the organic colloidal material along the Arctic land-ocean continuum. Large-volume samples of high-molecular weight DOC (colloids) were isolated as part of the International Siberian Shelf Study 2008 (ISSS-08) using 1000 D cross-flow ultrafiltration outside the mouths of Arctic rivers Ob, Yenisey, Lena, Indigirka and Kolyma as well as on the adjacent continental shelf seas Laptev Sea and the East Siberian Sea. The colloidal fraction was characterized by both bulk isotope parameters (δ13C and Δ14C) and with macromolecular biomarkers such as free lipids (n-alkanes, n-alkanoic acids, n-alkanols) and CuO reaction products (lignin phenols, cutin derived-products, protein and lipid products). In this presentation we will focus on regional differences between contrasting watersheds characterized by different climate and vegetation as well as permafrost conditions. Particular emphasis will be placed on origin, degradation, and dilution of the terrigenous colloidal material during its transport from land to the ocean. Finally, the comparison between the dissolved and particulate fractions will also be presented to highlight differences and similarities between these two pools of aquatic carbon.