

The Fractionation of Nitrogen Isotopes in Macroalgae during the Assimilation of Nitrate and Ammonium as a Function of Concentration

Peter Swart (1), Sam Evans (2), and Mark Altabet (3)

(1) University of Miami, RSMAS, MGG, Miami, United States (pswart@rsmas.miami.edu), (2) Boise State University, Idaho USA, (3) University of Massachusetts, Dartmouth

In order to determine the amount of fractionation of ^{15}N and ^{18}O during the assimilation of NO_3^- in marine macrobenthic algae, two species (*Ulva* sp. and *Agardhiella* sp.) were grown in a wide range of concentrations of NO_3^- (2-500 μM). Two types of experiments were performed, one in which the concentration of NO_3^- was allowed to decrease as it was assimilated by the algae over a 24 hours period and the water and nutrients then restored to the original concentrations and a second set in which the concentration was maintained at a low steady state value by means of a syringe pump. The effective fractionation factor during assimilation was determined by measuring the $\delta^{15}\text{N}$ of the (i) new algal growth produced, and (ii) measuring the $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ of the NO_3^- in the free drift experiments which were left for 0, 12, 24, and 48 hours. The fractionation of ^{15}N and ^{18}O was modeled using a Rayleigh distillation model. The results indicate that the fractionation factor during assimilation for NO_3^- is dependent upon the concentration of NO_3^- in both species of algae and approaches unity at concentrations of less than 10 μM . The change in the fractionation factor with respect to concentration is the greatest at lower concentrations (1-10 μM). There is also evidence that the fractionation factor falls below unity at very low concentrations. Determinations of the assimilation factor made using the $\delta^{15}\text{N}$ of the NO_3^- and the solid algal material provided statistically the same result.

At normal marine concentrations of NO_3^- , fractionation during assimilation can be considered to be negligible. However, at higher concentrations, fractionation during assimilation will lead to isotopic enrichment of the $\delta^{15}\text{N}$ of the NO_3^- pool regardless of the $\delta^{15}\text{N}$ of the source. In addition, to changing the relationship in fractionation relative to concentration, the relationship between the $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ also varies, with values close to unity at higher concentrations and decreasing at lower concentrations. These results suggest different fractionation mechanisms at high and low NO_3^- concentrations.