

Benzo(a)pyrene emitted during small-scale wood burning

Magdalena Kistler (1,2), Christoph Schmidl (2), Lylian Sampaio Cordeiro Wagner (1), Hans Lohninger (1), Heidi Bauer (1), Anne Kasper-Giebl (1), and Hans Puxbaum (1)

(1) Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
(magdalena.kistler@tuwien.ac.at), (2) Bioenergy 2020+, Wieselburg-Land, Austria

Benzo(a)pyrene (BaP) - a marker for the carcinogenic risk of polycyclic aromatic hydrocarbons (PAHs), is formed during inefficient combustion. Transportation and domestic combustion of solid fuels, including biomass, are known to be its major emission sources. The European Council has established in Document 2004/107/EC that the ambient concentration of BaP, starting from 31.12.2012, should not exceed 1 ng m^{-3} for the total content in the PM_{10} fraction averaged over a calendar year.

In Austria, the concentration threshold of BaP has been until now often violated, due to high share of biomass burning emissions in atmospheric pollution burden (e.g., report by Bauer et al., 2008).

The following experiment is part of a study characterizing wood burning particles from domestic sources in Austria and describes the BaP emissions.

We present the emission rates of PM_{10} and particulate PAHs from burning of the major wood species grown in eight Mid-European countries. The logwood tests were performed with modern small-scale (<10kW) logwood- and pellet stoves. PM_{10} was sampled on quartz fibre filters, over the whole combustion cycle (2 or 3 loadings). Particle-bound PAHs were determined, after extraction of combined samples, with GC-MS system (HP 5890 + HP 5973). The details are given in Schmidl et al. (2011) and Kistler et al. (2012).

BaP emission from four chimney stoves varied strongly ($3\text{--}45 \mu\text{g MJ}^{-1}$) among fuels and stove types. The variation of the emission rates from different combustion tests is explained with a multiple linear regression model including EC (a further oxidation product) and the burn rate as input variables. This indicates that the increased BaP emission rates are related to high burn rates (hot and air starved conditions), and may occur temporarily during very efficient burning cycles, which are characteristic for modern stoves.

These findings pose a question if the modern combustion technology is able to ensure a significant decrease of BaP levels in small "wood-burning-communities". Therefore we calculate and discuss BaP emission ratios in relation to PM_{10} in order to estimate the ambient wood-burning BaP concentration.

References

2004/107/EC Directive of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air; EN Official Journal of the European Union, (2005), L 23/3-23/16.

H.Bauer, A. Kasper-Giebl, N. Jankowski, P.Pouresmeil, C. Ramirez Santa Cruz, C.Schmidl, L.Sampaio Cordeiro Wagner, H.Puxbaum: "Endbericht für das Projekt Untersuchung der BaP Quellen in Zederhaus"; Report UA/AQZedB2010-35S (2010).

C. Schmidl, M. Luisser, E. Padouvas, L. Lasselsberger, M. Rzaca, C. Ramirez Santa Cruz, M. Handler, G. Peng, H. Bauer, H. Puxbaum: "Particulate and gaseous emissions from manually and automatically fired small scale combustion systems"; Atmospheric Environment, 45 (2011), 7443 - 7454.

M. Kistler, C. Schmidl, E. Padouvas, H. Giebl, J. Lohninger, R. Ellinger, H. Bauer, H. Puxbaum: "Odor, gaseous and PM_{10} emissions from small scale combustion of wood types indigenous to Central Europe"; Atmospheric Environment, 51 (2012), 86 – 93.