

Stability of a porosity wave in mineral replacement

Hanna Nizinkiewicz (1,2), Paweł Kondratuk (1), Enrique Merino (3), and Piotr Szymczak (1)

(1) Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoza 69, 00-618, Warsaw, Poland, (2) Faculty of Geology, University of Warsaw, Zwirki i Wigury 89, 02-089, Warsaw, Poland, (3) Geological Sciences, Indiana University, Bloomington, IN 47405, USA

Coupled dissolution and precipitation reactions are fundamental for understanding of water-mineral systems in geological settings. Whenever – as a result of those reactions – a product rock acquires has a larger porosity than the parent rock, the metasomatic front can become morphologically unstable due to the well-studied reactive-infiltration instability [1]. Here, however, we consider a different situation, where the parent and product rock are of a similar porosity, but there is a thin zone of high porosity right at the front, analogously to what was reported in the case of terra rossa formation [2]. Combining linear stability analysis and Darcy-scale simulations we study the stability of such a porosity wave and show that even though the total porosity in the system remains constant, the front becomes unstable, leading to the emergence of finger-like mineralization patterns.

- [1] D. Chada et al., 1986., *J. Appl. Math.* 36, 207-221.
- [2] E. Meriono and A. Banjerjee, 2008, *J. Geol.*, 116, 62-75