

Geothermal asymmetry across a continental transform fault inferred from thermochronology: the Motagua Fault Zone, Guatemala

Thibaud Simon-Labréteau (1), Gilles Y. Boccard (2), Christian Teyssier (3), Peter A. van der Beek (1), Maria Giuditta Fellin (4), Peter W. Reiners (5), and Christine Authemayou (6)

(1) University of Grenoble, ISTerre, Grenoble, France (thibaud.simon-labréteau@ujf-grenoble.fr), (2) Department of Earth and Environmental Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA., (3) Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA., (4) Geological Institute, Earth Science Department, Eidgenössische Technische Hochschule, Zürich, Switzerland, (5) Geosciences, University of Arizona, Tucson, AZ, United States., (6) Institut Universitaire Européen de la Mer (IUEM), Université de Brest (UBO), Plouzané, France

Strike-slip faults juxtapose crustal blocks with different geodynamic origins and potentially different thermal structures. Large-magnitude horizontal displacements along these faults may juxtapose terranes of contrasted thermal regimes. The effect of strike-slip faulting on the cooling histories that are derived from thermochronological dating remains poorly documented. We have used the zircon (U-Th)/He method in order to construct age-elevation profiles across the Motagua fault zone, a 500 km-long segment of the transform boundary between the North American and Caribbean plates. We combine our results with published thermochronological data to document a sharp cooling age discontinuity across the Motagua fault. This discontinuity could be interpreted as a difference in denudation history on each side of the fault. However, a low-relief Miocene erosional surface extends across the fault; this surface has been uplifted and incised and provides a geomorphic argument against differential denudation across the fault. Using surface heat-flow data, thermochronological age-elevation profiles and three-dimensional thermo-kinematic modeling, we propose that strike-slip displacement has juxtaposed the cold Maya block (s.s.) to the north against the hot, arc-derived, Chortí block (s.s.) to the south. Large-scale horizontal displacement along the Motagua fault maintained this geothermal asymmetry across the fault and explains both the age discontinuities and the age-elevation patterns. This study illustrates how thermochronology can be used to detect large strike-slip displacements.