

The influence of the changes in SST boundary conditions in Regional Climate Model simulations with RegCM4 in southeastern Brazil precipitation

Luana Pampuch (1), Tércio Ambrizzi (2), and Luiz Gimeno (3)

(1) Department of Atmospheric Sciences, University of São Paulo, São Paulo, Brazil (lupampuch@gmail.com), (2) Department of Atmospheric Sciences, University of São Paulo, São Paulo, Brazil (ambrizzi@model.iag.usp.br), (3) (Environmental Physics Laboratory) University of Vigo at Ourense, Ourense, Spain (l.gimeno@uvigo.es)

Analyses were performed through simulations with the Regional Climate Model RegCM4 for the years 1989 (rainy) and 1996 (dry), where SST boundary conditions are modified in the model. The objective of this analysis is to numerically investigate the influence of South Atlantic Ocean (SAO) SST anomalies in the southeastern Brazil precipitation during winter months.

Ten simulations were performed with modified SST anomalies in certain regions of SAO that were chosen through analysis of SST anomaly fields in the 1989 and 1996 years. The SST anomalies of the dryer year were inserted in the wet year and vice-versa. Two additional simulations were performed, where observed SST (control simulation) was used. The technique of factor separation was applied to access the influence of these changes in the precipitation on southeastern Brazil.

It was verified that all SST changes clearly influenced the simulated precipitation, with the most significant impact during June and August 1996 and June and August 1989.

In June 1996 where an anomaly of $+1.5^{\circ}$ 55°W - 30°W and 48°S - 55°S and August 1996 with an anomaly of $+1.0^{\circ}$ between 50°W - 35°W and 50°S - 60°S , both months considered as dry, the changes increased rainfall in the state of São Paulo.

For June 1989 an anomaly of -1.5°C between 30°W - 10°W and 20°S - 40°S and other of -1.5°C between 58°W - 45°W and 45°S - 52°S were added in the model and for August 1989 it was added an anomaly of -1.0°C around 35°W - 10°W and 22°S - 35°S , both months considered as rainy, the changes indicated a decrease in rainfall across much of southeastern Brazil.

This last result in 1989 (placing negative anomalies between -1° and -1.5°C) caused rainfall deficit, which is confirmed through the technique of composites during the dry months. These analyses support the hypothesis that when the region between 20°S - 30°S and 50°W - 20°W shows negative anomalies an extreme dry event is observed in the southeast Brazil during winter.