

Effects of season and nitrogen supply on the partitioning of recently fixed carbon in understory vegetation using a $^{13}\text{CO}_2$ pulse labeling technique

Niles Hasselquist, Daniel Metcalfe, and Peter Höglberg

Swedish University of Agriculture Sciences (SLU), Umeå, Sweden (niles.hasselquist@slu.se)

Vegetation research in boreal forests has traditionally been focused on trees, with little attention given to understory vegetation. However, understory vegetation has been identified as a key driver for the functioning of boreal forests and may play an important role in the amount of carbon (C) that is entering and leaving these forested ecosystems. We conducted a large-scale ^{13}C pulse labeling experiment to better understand how recently fixed C is allocated in the understory vegetation characteristic of boreal forests. We used transparent plastic chambers to pulse label the understory vegetation with enriched $^{13}\text{CO}_2$ in the early (June) and late (August) growing seasons. This study was also replicated across a nitrogen (N) fertilization treatment to better understand the effects of N availability on C allocation patterns. We present data on the amount of ^{13}C label found in different components of the understory vegetation (i.e. leaves, stems, lichens, mosses, rhizomes and fine roots) as well as CO_2 efflux. Additionally, we provide estimates of C residence time (MRT) among the different components and examine how MRT of C is affected by seasonality and N availability. Seasonality had a large effect on how recently fixed C is allocated in understory vegetation, whereas N fertilization influenced the MRT of C in the different components of ericaceous vegetation. Moreover, there was a general trend that N additions increased the amount of ^{13}C in CO_2 efflux compared to the amount of ^{13}C in biomass, suggesting that N fertilization may lead to an increase in the utilization of recently fixed C, whereas N-limitation promotes the storage of recently fixed C.