

Mid- to Late Holocene climate development in Central Asia as revealed from multi-proxy analyses of sediments from Lake Son Kol (Kyrgyzstan)

Stefan Lauterbach (1), Peter Dulski (1), Gerd Gleixner (2), Sabine Hettler-Riedel (3), Jens Mingram (1), Birgit Plessen (1), Sushma Prasad (1), Antje Schwalb (4), Anja Schwarz (4), Martina Stebich (3), and Roman Witt (2)

(1) GFZ German Research Centre for Geosciences, Section 5.2 - Climate Dynamics and Landscape Evolution, Potsdam, Germany, (2) Max Planck Institute for Biogeochemistry, Research Group Molecular Biogeochemistry, Jena, Germany, (3) Senckenberg Research Institute, Research Station for Quaternary Palaeontology, Weimar, Germany, (4) TU Braunschweig, Institute of Geosystems and Bioindication, Braunschweig, Germany

A mid-Holocene shift from predominantly wet to significantly drier climate conditions, attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, Holocene climate development in the arid regions of mid-latitude Central Asia, located north and northwest of the Tibetan Plateau, is less well-constrained but supposed to have been influenced by a complex interaction between the mid-latitude Westerlies and the ASM. Hence, well-dated and highly resolved palaeoclimate records from Central Asia might provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (*Central Asian Climate Dynamics*), aiming at reconstructing past climatic and hydrological variability in Central Asia, several sediment cores were recovered from alpine Lake Son Kol (41°48'N, 75°12'E, 3016 m a. s. l.) in the Central Tian Shan of Kyrgyzstan. A radiocarbon-dated sediment sequence of 154.5 cm length, covering approximately the last 6000 years, was investigated by using a multi-proxy approach, including sedimentological, (bio)geochemical, isotopic and micropalaeontological analyses. Preliminary proxy data indicate hydrologically variable but predominantly wet conditions until ca. 5100 cal. a BP, characterized by the deposition of finely laminated organic-carbonatic sediments. In contrast to monsoonal Asia, where a distinct trend towards drier conditions is observed since the mid-Holocene, the hydrologically variable interval at Lake Son Kol was apparently followed by an only short-term dry episode between ca. 5100 and 4200 cal. a BP. This is characterized by a higher δD of the C29 n-alkanes, probably reflecting increased evapotranspiration. Also pollen, diatom and ostracod data point towards drier climate conditions. Higher $\delta^{15}N$ values during this period may also reflect increased evaporation but could also be related to dust input of NO_x , being in agreement with high amounts of fine-grained minerogenic material. Further periods of higher $\delta^{15}N$ values and contents of fine-grained minerogenic material occurred at 3600–3000 and 2000–1600 cal. a BP. However, as biogeochemical data indicate no further distinct dry episodes since about 4200 cal. a BP, these intervals most probably reflect increased dust deposition. Finally, a trend towards wetter climate conditions can be observed during the last ca. 1500 years, reflected by high ostracod and diatom diversity and (bio)geochemical data. The absence of a pronounced drying trend since the mid-Holocene, as observed in monsoonal Asia, is largely consistent with results from other regional palaeoclimate records and might reflect the predominant influence of the strengthening mid-latitude Westerlies on regional climate since this time.