

Regional-scale correlation between CO₂ fire emissions, burned areas, and mid-tropospheric CO₂ diurnal variations retrieved from MetOp-A/ATOVS observations (2007-2011) over southern Africa.

Nicolas Meilhac, Cyril Crevoisier, Alain Chédin, Noëlle A. Scott, Raymond Armante, and Laurent Crépeau
Laboratoire de Météorologie Dynamique, IPSL, Ecole Polytechnique, 91128 Palaiseau, France
(nmeilhac@lmd.polytechnique.fr)

Inferred from the Advanced TIROS Operational Vertical Sounder (ATOVS) flying onboard the MetOp-A platform, mid-tropospheric CO₂ columns are retrieved from evening (21:30 LST) and morning (09:30 LST) observations over the tropic for the period July 2007 - December 2011, using a non linear inference scheme based on neural networks initially designed for TOVS instruments onboard the NOAA platforms (Chédin et al. 2003),

We find that the difference between evening and morning CO₂ columns, hereafter referred to as Daily Tropospheric Excess (DTE), increases up to several ppm over regions affected by biomass fires, confirming the results obtained from TOVS observations onboard the NOAA10 platform over 1987-1991. The physical mechanism linking DTE with fire emissions comes from the diurnal cycle of fire emissions associated with enhanced convection: hot convective fire plumes injects CO₂ into the troposphere during the afternoon peak of fire activity, which is seen by the satellite evening passing; it is then diluted by large scale atmospheric transport, before the next satellite morning passing.

The CO₂ DTE shows monthly, seasonal and annual spatial patterns similar to fire products, such as CO₂ emissions from the Global Fire Emission Database (GFEDv3) and burned areas from the MODIS instrument for ten regions of southern Africa with contrasted vegetation cover. Across these regions, a high positive correlation is found between DTE and CO₂ emission ($R^2 \sim 0.8$). There is also a good agreement in terms of seasonal variability north of 14S. South of 14S, the seasonal increase of the CO₂ difference during the early fire season starts earlier and rises up more rapidly than in either GFEDv3 or MODIS burned areas. This misfit could come from limitations in current burned area detection algorithms owing in particular to their difficulty in detecting small fires associated with small burnt scars.