

The construction of a 3D aerosol climatology from CALIOP for the improvement of tropospheric trace gas retrievals from satellites

Franziska Kreling (1,2), Marloes Penning de Vries (1), Steffen Beirle (1), and Thomas Wagner (1)

(1) Max Planck Institute for Chemistry, Mainz, Germany, (2) Johannes Gutenberg University, Mainz, Germany

For the correct interpretation of satellite measurements of trace gases, the airmass factor (or weighting function) of a measurement needs to be well known. This airmass factor depends on solar and viewing geometry, but is also strongly influenced by clouds and aerosols — particularly in the troposphere. Differences in assumptions of aerosol amount, profile and type lead to large errors in trace gas retrievals: for example, the vertical column density of NO₂ over China can vary by a factor of 2 depending on the choice of aerosol parameters. The recent release of a global monthly mean aerosol profile product by the CALIOP lidar team presents an opportunity to improve the airmass factor calculations by including measured extinction profiles (as opposed to model data) on a 2°x5° spatial resolution, with a time resolution of seasons or even months. The profiles can be combined with MODIS monthly mean aerosol optical depth, which is an extensively validated product with much better statistics compared to the CALIOP product.

We here present first attempts at the construction of such a 3D aerosol climatology. Investigations of the quality of the data set and the variability of the profiles in space and time are shown.