

Seasonal to Inter-annual Variability of the Atlantic Ocean Carbon Sink

Peter Landschützer (1), Ute Schuster (1), Dorothee Bakker (1), and Nicolas Gruber (2)

(1) School of Environmental Sciences, University of East Anglia, United Kingdom (p.landschutzer@uea.ac.uk), (2) Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland

The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO₂), but this sink is known to vary substantially from seasonal to multi-decadal time scales. Here we use observations of the surface ocean partial pressure of CO₂ (pCO₂) to estimate this sink and its temporal variations on a monthly basis from 1998 through 2007. We benefitted (i) from a continuous strengthening of the observational underway network and (ii) from an improved technique to interpolate the data in space and time. In particular, we combine two artificial neural network methods to reconstruct basin-wide monthly maps of the sea surface pCO₂ at a resolution of 1° latitude x 1° longitude. From those, we then compute air-sea CO₂ flux maps using a standard gas exchange parameterization and high-resolution wind speeds. The evaluation of our estimates with independent time series data demonstrates that our method reconstructs the seasonal signal at these independent stations well.

We estimate a decadal mean flux of $0.45 \pm 0.16 \text{ PgC yr}^{-1}$ for the Atlantic region from 44°S to 79°N and west of 30°E, which is in good agreement with recent studies. We find the strongest seasonal variability of the sea surface pCO₂ and the CO₂ air-sea fluxes within the subtropics of the northern and southern hemisphere, i.e. the zones where the seasonal cycle of the sea surface pCO₂ is thermally driven.

Trends in sea surface pCO₂ suggest the strongest increase from 1998 to 2007 polewards of 40°N along the Gulf Stream, the North Atlantic Current and the Subpolar Gyre leading to a decreasing ocean carbon sink, whilst temporal trends in the South Atlantic show an increasing sink. Our results show that the air-sea flux shows only small inter-annual variability of 0.04 PgC yr^{-1} , with low variability both in the South Atlantic (0.02 PgC yr^{-1}) and the North Atlantic (0.02 PgC yr^{-1}).