

Inferring Source and Sink of Atmospheric CO₂ at High-resolution from Space: a Mesoscale Modeling Approach using Inverse Technique

Dhanyalekshmi Pillai (1), Michael Buchwitz (1), Christoph Gerbig (2), Thomas Koch (2), Heinrich Bovensmann (1), Maximilian Reuter (1), and John Burrows (1)

(1) Institute of Environmental Physics, University of Bremen, Germany, (2) Max Planck Institute for Biogeochemistry, Jena, Germany

Satellite observations providing column-averaged atmospheric CO₂ mixing ratios with adequate temporal and spatial sampling as well as high precision can offer valuable additional information on the regional distribution of the sources and sinks of CO₂. The proposed satellite mission Carbon Monitoring Satellite (CarbonSat) has been selected by the European Space Agency (ESA) to be one of two candidate mission for Earth Explorer 8 (EE-8) to be launched around 2019. CarbonSat will measure dry-air column-averaged mixing ratios of CO₂ and CH₄, denoted as XCO₂ and XCH₄ respectively, with a high spatial resolution of 2 x 2 km² and very good spatial coverage (goal: 500 km swath width). CarbonSat will produce atmospheric XCO₂ images from which the CO₂ emission pattern of moderate to strong localized emission sources can be derived and hence has the capability to monitor emissions of major cities and other strong localized emission sources. In order to effectively utilize these measurements and to estimate surface fluxes at the required spatio-temporal resolution and with significant uncertainty reduction, a high-resolution coupled biosphere-atmosphere modeling framework using inverse technique is required.

The goal of this study is to assess CarbonSat's capability to quantify the CO₂ emissions of large cities, taking into account a realistic description of the XCO₂ retrieval errors, the spatio-temporal distributions of CO₂ emissions as well as atmospheric transport and mixing. The study proposes to use a modeling framework consisting of the following models: the Weather Research Forecasting (WRF) model which enables passive tracer transport simulations of greenhouse gases (WRF Greenhouse Gas Model, WRF-GHG) and the Stochastic Time-Inverted Lagrangian Transport model (STILT) to derive biosphere-atmosphere exchange at high spatio-temporal resolution. The initial focus of the study is to perform forward simulations of atmospheric CO₂ concentrations for a domain centered on Berlin in Germany (as a case study for a typical mid-scale city) with a horizontal resolution of 10 x 10 km². An analysis will be carried out for all CarbonSat Berlin overpasses using simulated CarbonSat data for one reference year. Preliminary results will be presented along with the modeling approach.