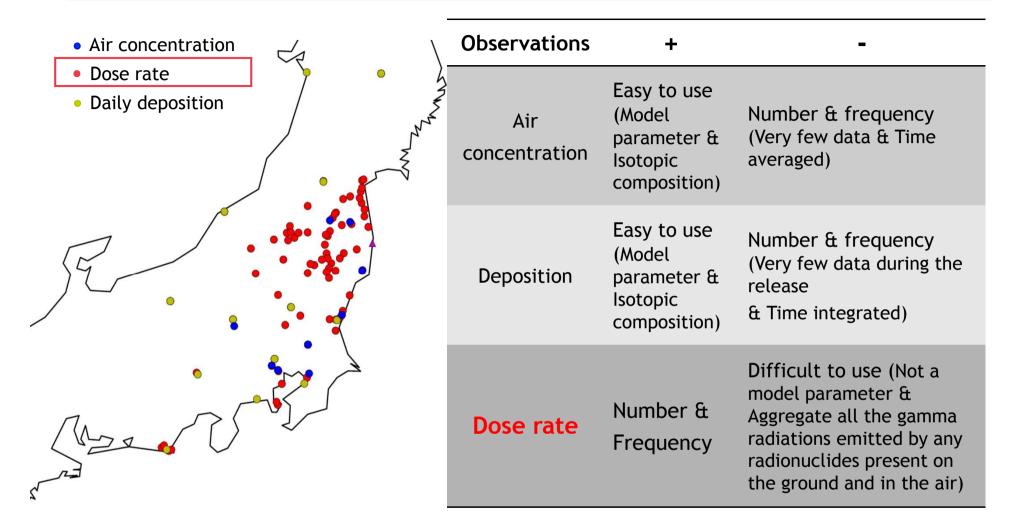
IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

The Fukushima releases: an inverse modeling approach to assess the source term by using gamma dose rate

O.SAUNIER, <u>A.MATHIEU</u>, D.DIDIER, M.TOMBETTE, D.QUELO, M.BOCQUET, V.WINIAREK

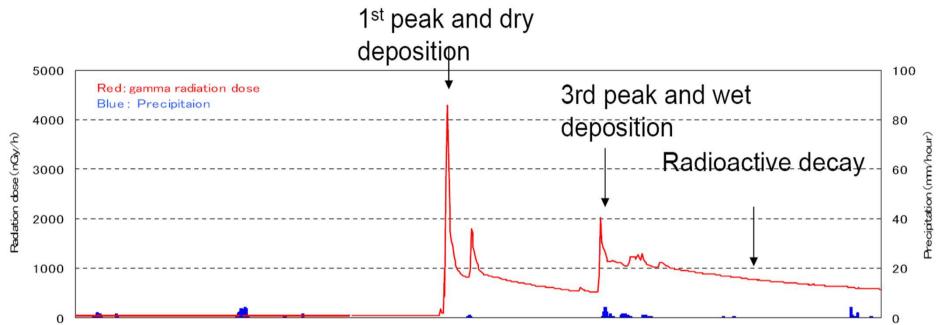
Anne.mathieu@irsn.fr


Chernobyl and Fukushima accidents proved that it can be tricky to estimate the releases in the atmosphere.

The strong uncertainties of the release prevent

- □ to have a complete understanding of the nuclear accident
- □ to assess the actual impact on the population.

To assess the emissions: Inverse modeling approach by using observations in the environment.



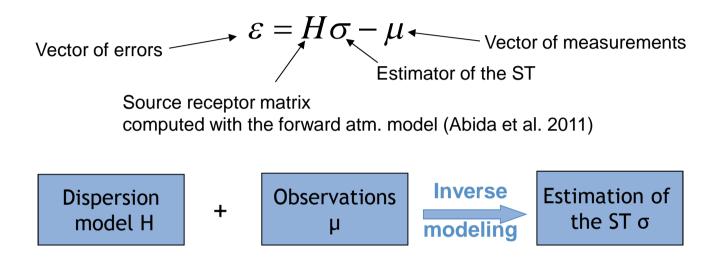
Inverse modeling approach : the novelty of the method is the use of dose rate observations (70 stations and 381 time steps between 11st and 27th March).

Ingredients of the reconstruction: observations

The signal is mainly due to 8 radionuclides: ¹³⁴Cs, ¹³⁶Cs, ¹³⁷Cs, ¹³⁷mBa, ¹³²Te, ¹³²I, ¹³¹I, ¹³³Xe Secular equilibrium (¹³⁷Cs/¹³⁷mBa, ¹³²Te/¹³²I) & Constant ratio (¹³⁴Cs/¹³⁷Cs)

7 Objective: estimate the release rate of 5 radionuclides: ¹³⁴Cs, ¹³⁶Cs, ¹³²Te, ¹³¹I and ¹³³Xe

How to use dose rate signal ?


- Plume detection when it blew over the station timing of the release events.
- The slope due to the radioactive decay of the deposit isotopic composition.
- The value of the observed dose rate quantities released.

IRS

Ingredients of the reconstruction: the inverse problem

The inverse problem to solve can be formalized by:

Source term (ST): temporal evolution of the release rate + distribution between radionuclides

The objective is to assess the ST σ so that the error ε is minimized.

Cost function (minimized by using L-BFGS-B algorithm)

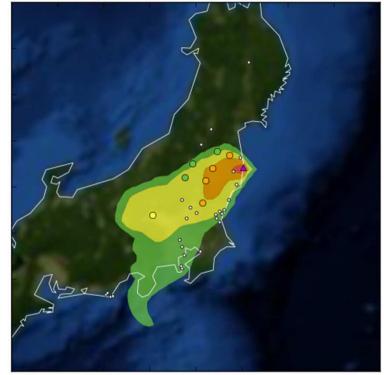
$$J(\sigma) = \frac{1}{2} \left(\mu - H\sigma \right)^T R^{-1} \left(\mu - H\sigma \right) + \frac{1}{2} \left(\sigma - \sigma_b \right)^T B^{-1} \left(\sigma - \sigma_b \right)$$

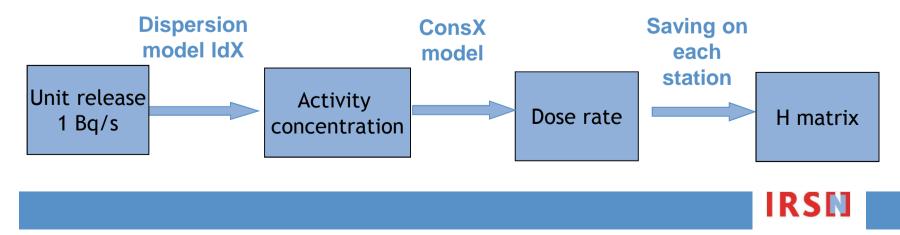
Hypothesis

- No prior knowledge of the ST ($\sigma_b = 0$)
- Simple parameterizations (Winiarek et al., 2011): R = B = I

Ingredients of the reconstruction: H matrix

Eulerian dispersion model IdX from the operational C3X platform.


- Dry deposition: $v_{dep} = 2 \ 10^{-3} \text{ cm/s}$
- Wet deposition: $As = ap_o^b$, with $a = 5 \ 10^{-5}$ and b = 1
- Vertical diffusion: Troen and Mahrt scheme
- Radioactive decay + filiation

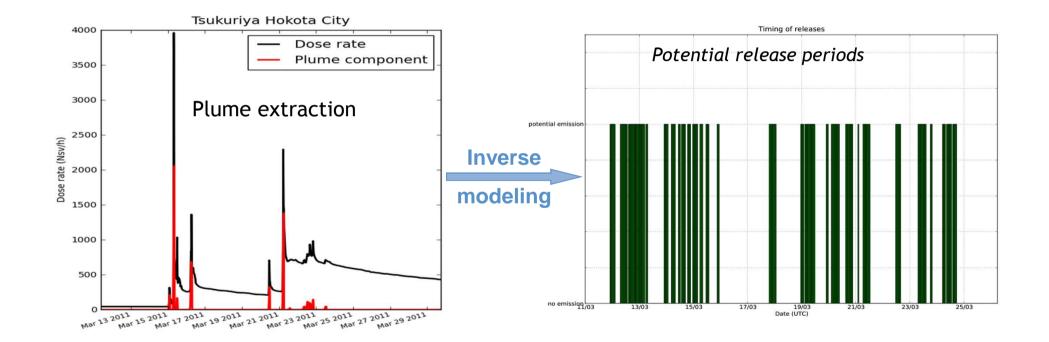

Met. data: ECMWF (0.125°)

Spatial resolution: $0.125^{\circ} \times 0.125^{\circ}$

Time resolution: 1 hour

Consequences model : $cons \chi$ from $C3\chi$

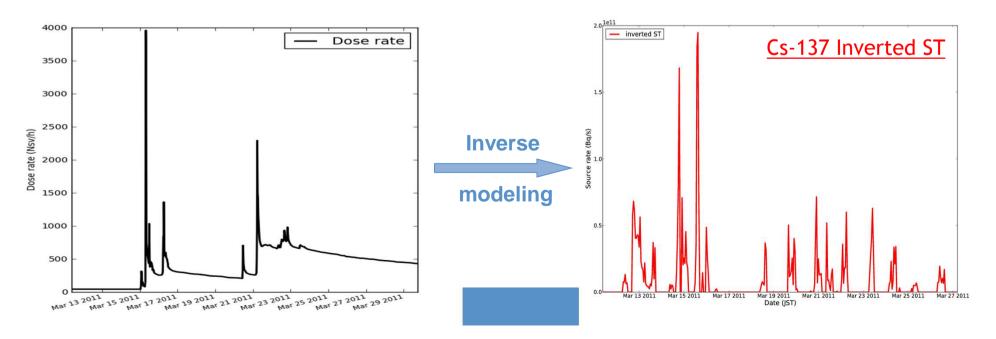
Inverse modeling method


Raw dose rate measurements cannot be used directly: inverse problem not sufficiently constrained

- Solution to solve the inverse problem: reduce the number of parameters + limit the solution space
 - □ Isotopic composition of the ST: only 5 radionuclides
 - □ A two steps method
 - 1. Identify the potential release periods
 - 2. Assess the release rates during periods identified in step 1
 - Add isotopic constraints: radionuclides released in proportions that depends on their physicochemical properties + the core inventory

Step 1: Inverse modeling to identify the potential release periods

Measurements: dose rate due to the plume component for 70 stations

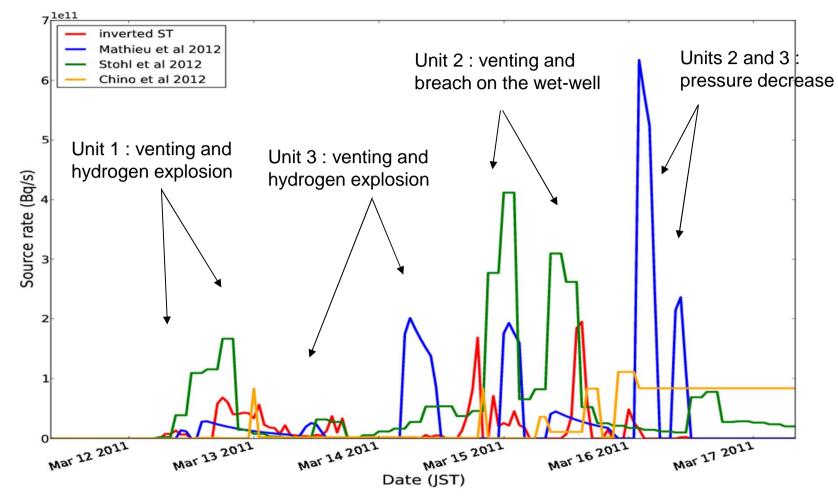


Step 2: Inverse modeling to assess the release rates during periods identified in step 1

- □ <u>Measurements</u>: the complete dose rate signal on 70 stations
- Soft <u>constraints on isotopic ratio</u> are imposed (based on analysis of core reactor and air concentrations measurements in Japan)

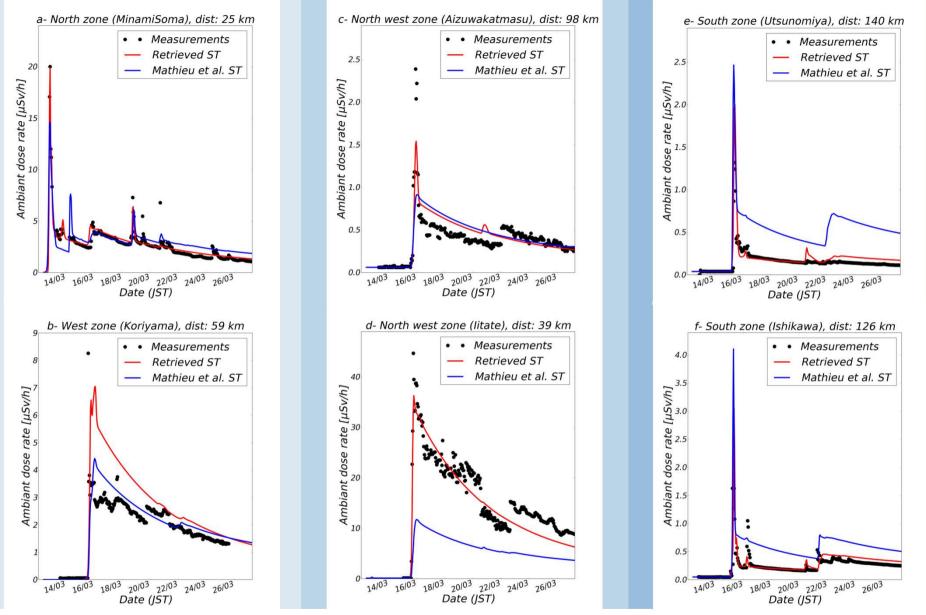
□ The <u>cost function</u> to minimize uses a regularization function which contains information about isotopic ratios

Comparisons with other ST

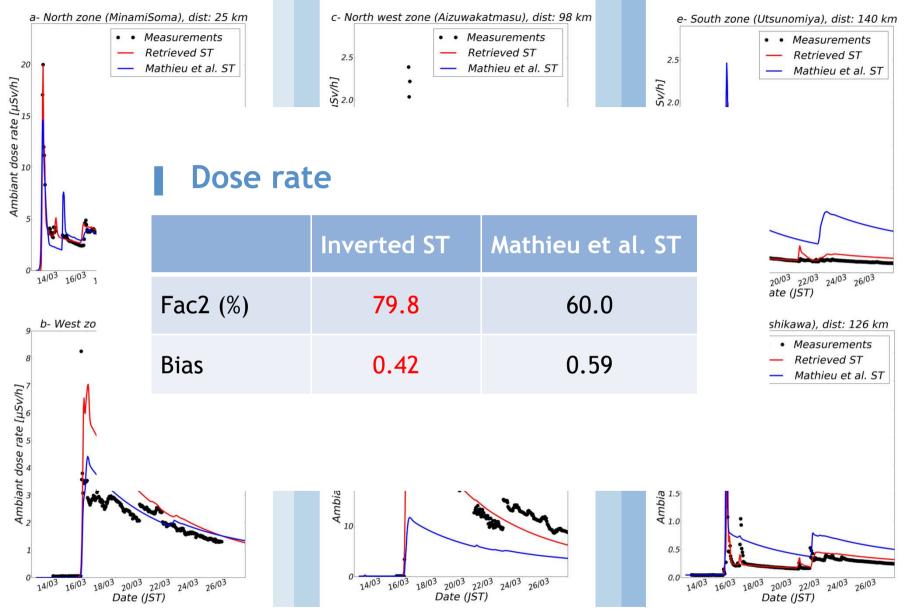

Source Term (PBq)	¹³³ Xe	131	132	¹³⁷ Cs	¹³⁶ Cs
Inverted ST	12100	103	35.5	15.5	3.7
Mathieu et al. (2012)	5950	197	56.4	20.6	9.8
Winiarek et al. (2012)	-	190-380	-	12-19	-
Terada et al. (2012)	-	150		13	-
Stohl et al. (2012a)	13400-20000	-	-	23.3-50.1	-
TEPCO (2012)	500	500		10	

Inverted quantities are **consistent with the other estimations**.

- Underestimation in iodine and cesium in comparison with Mathieu et al ST (several events are not identified by inversion).
- Amount of noble gases is similar to Stohl et al estimation: probably overestimated



Comparisons with other ST


- The main release events are well reproduced by the inverted source.
- Events occurred on the reactors 1 and 3 are uncertain (too few observations).
- Amounts of radionuclides are quite different depending on the source term.

IRSN

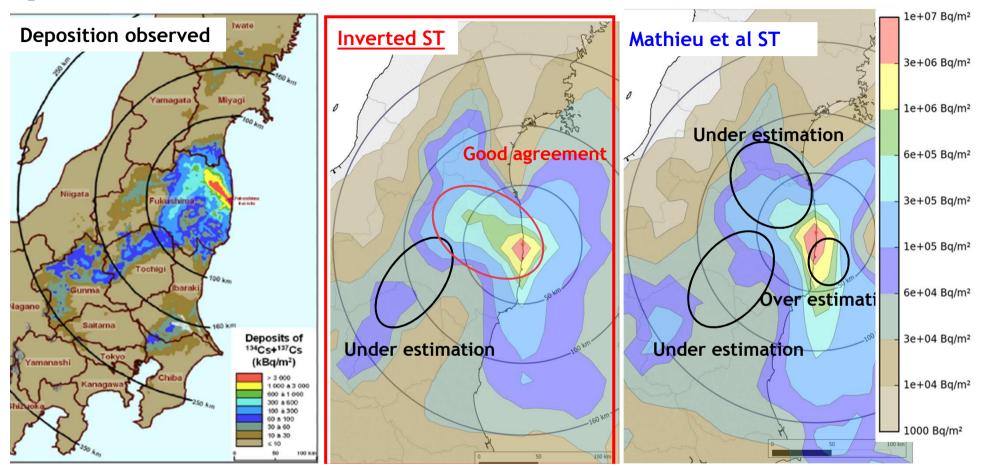
Good agreement between model and observations.

- Additional releases are identified with the inverse modeling method.
- Discrepancies are due mainly to inaccurate meteorological fields.

Good agreement between model and observations.

- Additional releases are identified with the inverse modeling method.
- Discrepancies are due mainly to inaccurate meteorological fields.

Model to data comparison


Air concentration measurements (not used in the inverse process) 10 Chibacity Chibacity ¹³²Te ¹³⁷Cs • • Wako • • Wako 105 10 🗧 🗧 Tokyo 🗧 🗧 Tokyo • • Tsukuba • • Tsukuba 10 10 • • JPP 38 Tokai 103 🗧 🗧 Tokai 10 10 10 Simulation 10⁻¹ **Inverted ST** 10 10 10^{-2} 10 10^{-3} 10-3 10-4 10 10 10 $\begin{array}{c} 10_{10}^{6} \overline{0.5} & 10^{-5} & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{0} & 10^{1} & 10^{2} & 10^{-3} & 10^{4} & 10^{5} & 10^{6} \\ \hline 0 \\ Observations \end{array}$ $\begin{smallmatrix} 10^{-6U} \\ 10^{-6} & 10^{-5} & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{0} & 10^{2} & 10^{-3} & 10^{-4} & 10^{-5} & 10^{-6} \\ 0 \\ Observations \end{smallmatrix}$ 10 V Chibacity ¹³⁷Cs V V Chibacity ¹³²Te V Vako V Vako 105 10 🔻 🔻 Tokyo 🔻 🔻 Tokyo 🔻 🔻 Tsukuba 🔻 🔻 Tsukuba 10^{4} 104 ▼ ▼ JPP_38 🔻 🔻 Tokai 🔻 🔻 Tokai 10³ 10 102 Mathieu et al ST 10¹ 10 Sim 10 10-1 10-2 10-2 10 10-3 10 10 10-10 $10^{-6}_{-10^{-6}} 10^{-5}_{-10^{-5}} 10^{-4}_{-10^{-3}} 10^{-2}_{-10^{-1}} 10^{0}_{-10^{-1}} 10^{2}_{-10^{-1}} 10^{4}_{-10^{-5}} 10^{4}_{-10^{-5}} 10^{6}_{-10^{-5}}$ $10^{-6}_{-10^{-5}} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6}$ Observations Observations

- Good enough agreement between model (with inverted ST) and observations.
- Realistic isotopic composition.

Reconstruction of the Fukushima source term

Total Cs-137+ Cs-134 deposition (not used in inversion)

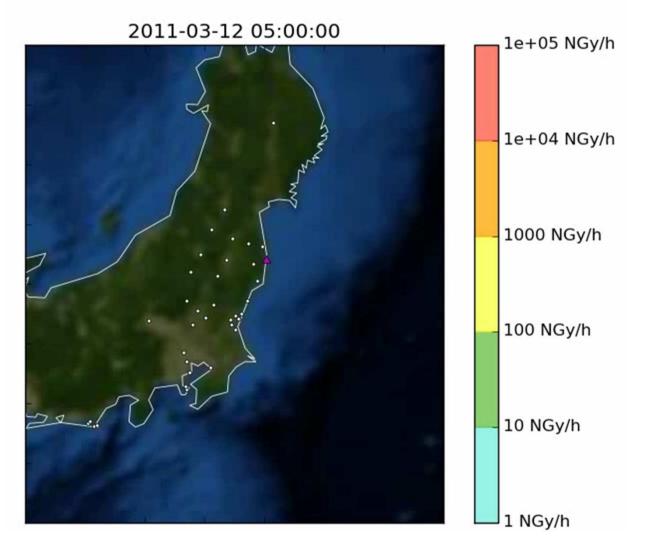
- In the north-west of the plant, good agreement between model (with inverted ST) and observations (not used to assess the ST).
- The agreement is not perfect in some areas (Tochigi and west Fukushima prefectures).
- Differences are due mainly to inaccurate meteorological fields(precipitation, wind) and deposition scheme.

Reliable inversed modeling method to assess the source term by using dose rate measurements

Performances

- Good results achieved on the Fukushima accident.
- The quality of the meteorological forecast is a key point to retrieve a realistic source term.

Use


- Perfectly suited to crisis management.
- □ Efficient tool to improve the understanding of an accident.

Perspectives

- Improve the reconstruction of the isotopic composition (lodine 132): air concentration, deposition and dose rate observations.
- □ Extend the method to all spatial scales.

Thank you for your attention

Model to data comparisons (dose rate - plume component)

