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  Seek a unified model of space-time statistics of rain at 
various averaging scales (L,T) 

  Experimental need to compare radar and gauge 
measurements during ground validation 

  Need to capture inter-dependence of space/time 
averaging scales and fall-off rates of spatiotemporal 
correlations 

  Estimate the sampling error of radar and gauge 
measurements 

[Kundu & Travis, 2013;  submitted to JGR-Atmospheres] 



  Describe rain in terms of a random field R(x,t) – the 
instantaneous point rain rate (a mathematical abstraction) 
obeying a stochastic dynamical equation  

  Space-time stationary, homogeneous, isotropic statistics 
  Derive statistical properties (2nd moment statistics) of 

spatial averages at an instant rA(t) (radar estimates) and 
time averages at a point rT(x) (gauge estimates) from a 
common parameterized framework.  

  Model parameters tuned to radar statistics should describe 
gauge statistics without any further adjustment. 



  Linear stochastic differential equation of fractional order β 
for the Fourier amplitudes a(k,t) (notation: -∞Dt

β ~(d/dt)β) : 

 f(k,t) = white noise random force of amplitude F0.  
  Model parameters: strength parameter F0, characteristic 

length L0, characteristic time τ0, spectral indices β and α	

  Relaxation time of the Fourier mode k: τk ~ k-α  (k → ∞) 

(short wavelength), τk ~ τ0  (k → 0) (long wavelength) 
   β = 1 case: Langevin Equation  (‘Brownian Motion’).	
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   The fractional order time derivative -∞Dt
β is defined as the    

     a  → −∞ limit of  an integral kernel 

    called the Riemann-Liouville derivative operator. 
   The limit called the Liouville-Weyl operator has the  
     important property  

      under Fourier transform.   
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   Power spectrum of the model  

    --  Fourier transform of space-time covariance c(ρ,τ) 
   The spatial covariance at zero lag has the Matérn form  

   Two distinct cases: (i) ν > 0 : point variance c(0,0) is 
     finite; (ii) ν < 0 : c(0,0) is divergent, c(ρ, 0) ~ ρ-2|ν|. 
    Radar data strongly indicates ν < 0.  
        (β = 1 case:  Bell and Kundu J. Climate 1996, Kundu and Bell WRR 2003) 
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c ρ,0( ) = γ 0 ρ /2L0( )νKν ρ /L0( ),
α 2β −1( ) = 2 1+ ν( ).



    Lagged covariance of rain rate area-averaged over two 
     L × L squares A and A’ spatially separated by distance s  
     and time τ : 

   Variance for a box A: σA
2 = ΓAA(0,0) ≈ A + BL-2|ν| as L → 0. 

   Spatial correlation at zero lag:  ΦΑΑ’(s,0) = ΓΑΑ’(s,0)/σA
2 

    Lagged autocorrelation for a box A: ΦΑΑ(0,τ) = ΓΑΑ(0,τ)/σA
2 
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Model Fit to Radar Data 

   TRMM GV Data (2A53) : 
     MELB radar (Melbourne FL)  
     KWAJ radar (Kwajalein Atoll,  
             Rep. Marshall Islands,  
             Pacific Ocean)  
   Radar data gridded  
         into 151 × 151 array  
         of  2 × 2 km pixels. 
   Results from 
         JJA 2001 season 
    Model parameters 
         γ0 (F0), ν, L0 and τ0  
       fit from radar data 

Variance of Radar Averages 



Model Fit to Radar Data (cont.) 

Spatial Correlation of 2 km Radar Pixels  
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Model Fit to Radar Data (cont.) 

   Model Parameters: JJA 2001 season 
   MELB: γ0 = 0.994 (mm/h)2, ν = -0.14, L0 = 35 km, β = 1.2, τ0 = 130 min  
   KWAJ: γ0 = 0.056 (mm/h)2, ν = -0.28, L0 = 480 km, β = 1.3, τ0 = 780 min 
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  TRMM GV Data 
  Radar (2A53) & Gauge (2A56) 
  Nov. 1997 – present 
  Radar FOV 300 km diameter 
  1-min averaged rain rates 
  300+ Tipping Bucket gauges 
  Eastern Florida 

  Statistics computed for 3 month season JJA 2001 
  Radar statistics computed for the central 128 km box 
  1 min. data aggregated to yield gauge statistics 
  Some artifacts from cubic spline fitting of TB data for T < 10 min  



Definition of the Gauge Statistics 

  Spatial Covariance of a gauge pair separated by  
     distance  ρ  averaged  over a time window T 

    Variance of  the time average: σT
2 = ΓTT(0) ≈ const. T-2|ν|/α  

       as T → 0.  
    The spatial correlation of a gauge pair: ΨTT(ρ)= ΓTT(ρ)/σT

2 € 

ΓTT ρ( ) = 1/T( )2 dt d ʹ′ t 
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JJA 2001 

TRMM GV Data 
  2A56 MELB 

TRMM GV Data 
  2A56 KWAJ 
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Asymptotic behavior of radar and gauge variances in the ν < 0 case: 

•    Power-law behavior apparent from the model plots on a log-log scale. 
•    Gauge data show a tendency for gauge variance σT

2 to approach a constant  
         value  σ0

2 as T→ 0 contrary to radar data. 
•    A possible solution to this dilemma: 
         Introduce a short distance (“ultraviolet”)  wave number cut-off 

         This renders the small scale limit σ0
2 finite: 

•   Consistency with radar data requires Λ to be small compared to the radar  
        resolution (2 km). MELB data yields the estimate Λ ≈ 0.19 km and  
        KWAJ data yields Λ ≈  0.36 km 
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  We have described a spectral model of rainfall in terms of a 
stochastic differential equation of fractional order. 

  The model gives a unified description of the second moment 
statistics of both radar and rain gauge observations. When the 
parameters are determined from radar data, they also fit the 
gauge statistics without any further adjustment. 

  The new feature of the model is the use of a fractional order 
time derivative, which signifies the presence of memory.  

  We plan to apply the model to radar-gauge statistical inter-
comparison studies in the context of GPM ground validation. 

Thank You! 


