Receptor modelling of boreal wildfire associated PM_{2.5} in Halifax, Nova Scotia, Canada

¹Dalhousie University, Department of Process Engineering and Applied Science, Halifax, Nova Scotia, Canada, ²Environment Canada, Dartmouth, Nova Scotia, Canada, ³Dalhousie University, Department of Physics and Atmospheric Science, Halifax, Nova Scotia, Canada, ⁴Ocean University of China, College of Environmental Science and Engineering. ⁵Environment Canada, Toronto, Ontario, Canada, ⁶Centre for Environmental Health Sciences, University of Montana, ⁷School of GeoSciences, The University of Edinburgh, Edinburgh, UK., ⁸Department of Atmospheric Science, Colorado State University, Colorado, US

Geophysical Research Abstracts, Vol. 15, EGU2013-1604-4, 2013. Session AS4.11/BG2.19/NH7.3. Poster Z213. European Geophysical Union General Assembly 2013, Vienna, Austria, 7 - 12 April 2013

Aim & Objectives

To apportion the source contribution from boreal forest wild fire smoke (and other sources) to the total PM_{25} mass concentration in Halifax during the BORTAS-B project. Materials & Methods

45 days of contiguous PM_{2.5} filter samples were collected in Halifax between 11/07/11 & 25/08/11 (Palmer et al., 2013). Fig 1 provides the location of the Dalhousie Ground Station (DGS). To help identify upwind source regions, NOAA HYSPLIT 2-day air mass back trajectories were run twice per day, together with local meteorological measurements. An ensemble HYSPLIT plot of the 2-day back trajectories by source sector is presented in Fig. 2 (cyan = marine aerosol, red = NE US, green = Windsor-Québec corridor Canada, blue = Northern Canada). The PM_{25} mass concentration and species sampling equipment used at the DGS is shown in Fig 3.

Fig. I DGS Monitoring Site

Fig. 2 HYSPLIT ensemble air mass back trajectories

The 24-hr PM_{2.5} mass concentration was determined by gravimetric analysis of the teflon filter. The teflon filter was also analyzed by ED-XRF (Thermo Quant' X) and ICP-MS (Thermo X-Series II) for 33 water soluble metals. The nylon filter was analyzed by ion chromatography (Thermo Dionex ICS-1000) for water soluble Na⁺, NH₄⁺, Cl⁻, NO₃⁻ and SO_4^{2-} (Gibson et al., 2013). The woodsmoke chemical source marker levoglucosan was measured by GC-MS following derivatization.

Four receptor models were used to apportion the PM_{25} samples: pragmatic mass closure (PMC) (Harrison et al., 2003), absolute principal component scores (APCS) (Thurston & Spengler 1985), USEPA Positive Matrix Factorization v3.0 (PMF) (Gibson et al., 2013) and USEPA Chemical mass Balance v8.2 (Ward et al., 2012). The PMF and CMB results are presented here. The PMC and APCS receptor model results will be presented during session AS4.11/BG2.19/NH7.3, EGU2013-11402.

Mark D. Gibson^{1*}, James Kuchta¹, Lucy Chisholm², Tom Duck³, Jason Hopper¹, Stephen Beauchamp², David Waugh², Gavin King¹, Jeffrey Pierce^{3/8},

Corresponding author: mark.gibson@dal.ca

We are grateful to Professor Paul Palmer (University of Edinburgh) for funding project consumables via his Philip Leverhulme Prize. Health Canada for the loan of the Thermo ChemCombs, TSI DustTraks and Magee Aethalometer. CD-NOVA for the gift of a Thermo Partisol 2025-Dichotomous sampler

Zhengyan Li⁴, Richard Leaitch⁵, Tony J. Ward⁶ and Paul Palmer⁷

Acknowledgements

two of which were biomass combustion related (woodsmoke and vegetative burning). woodsmoke. The PM_{2.5} samples unambiguously associated with woodsmoke (presence trajectories in Fig 2.). GEOS-Chem (CO), FLEXPART, LIDAR and MODIS fire products CMB woodsmoke mass (%) source contribution to PM_{2.5} during BORTAS-B was found to be 0.61 ± CI 0.36 μ g/m³ (11 %) and 3.23 ± CI 0.54 μ g/m³ (19 %) respectively. CMB References

Gibson et al., (2013) Identifying the sources driving observed PM25 variability over Halifax, Nova Scotia, during BORTAS-B. Atmos. Chem. Phys. Discuss., 13, p4491. Harrison et al., (2003) A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmos. Environ. 37 p4927. Thurston & Spengler (1985) A Quantitative Assessment of Source Contributions to Inhalable Particulate Matter Pollution in Metropolitan Boston. Atmos. Environ. 19 p9. Palmer et al., (2013) Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview. Special Issue: Quantifying the impact of Boreal fires on tropospheric oxidants over the Atlantic using aircraft and satellites (BORTAS). mos. Chem. Phys. Discuss., 13, p4127.

πpt	IVC	z sta	LISUCS.	•				Metric	n	Mean	Median	Min	Max	Std Dev	СІ	
	n	Mean	Median	Min	Max	Std	СІ	Observed PM _{2.5}	45	4.57	4.04	0.08	13.73	3.39	0.98	
						Dev		Surface Dust	2	0.81	0.81	0.39	1.24	0.6	0.83	
	45	4.57	4.04	0.08	13.73	3.39	0.98	LRT Pollution (Coal/Industrial)	5	0.83	0.85	0.57	1.09	0.2	0.17	
ar	39	0.05	0.03	0.00	0.17	0.04	0.01	Woodsmoke	14	3.23	3.59	1.38	4.72	1.04	0.54	
	30	0.14	0.02	0.00	3.43	0.62	0.22	Marine Aerosol	34	0.3	0.24	0.04	1.64	0.3	0.1	
D ₄	33	2.05	1.15	0.09	12.12	2.45	0.84	Ship Auxiliary Engines	17	1.43	1.2	0.3	3.2	0.84	0.4	
	34	0.55	0.49	0.04	1.15	0.31	0.11	LRT Pollution $(NH_4)_2SO_4$	21	1.45	0.67	0.24	6.77	1.58	0.68	
	20	0.00	0.44	0.00	7.00		0.40	Tire Wear	1	0.82	0.82	0.82	0.82	NA	NA	
lixture	38	0.88	0.44	0.02	7.00	1.31	0.42	Diesel Trucks	2	1.11	1.11	1.1	1.12	0.02	0.02	
	29	0.61	0.14	0.00	4.14	1.00	0.36	Vegetative Burning	2	2.25	2.25	1.42	3.08	1.18	1.63	
lustry)	34	0.74	0.48	0.00	2.97	0.69	0.23	Small Gasoline Vehicles	5	2.35	2.51	0.58	5.08	1.87	1.63	
	38	0.33	0.19	0.00	2.55	0.44	0.14	LRT Pollution NH ₄ NO ₃	2	0.54	0.54	0.14	0.94	0.57	0.79	
								SO	35	1.31	0.95	0.35	5.4	1.08	0.36	

Vard et al., (2012) PM₂₅ Source Apportionment in a Subarctic Airshed Fairbanks, Alaska. Aerosol & Air Quality Research, 12 p536.

Atmospheric Forensics Research Group //afrg.peas.dal.ca