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3. Results
• A recent study using observational data collected near cape 

Sines, Portugal, showed that not only wind and waves are 
important forcing mechanisms of the inner-shelf circulation, 
but also that the along-shore pressure gradient plays a major 
role on driving cross-shore exchange.

• A modeling study was conducted in order to study the 
diurnal variability of the inner-shelf circulation, in the 
presence of a cape.

• The preliminary results of the effects of these processes on 
the inner-shelf circulation will be presented.
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Idealized configuration
• ~ 0.3km resolution
• 180m > H > 5m
• A – Topo constant slope
• B – Topo follows cape

TEST CASE: Sea Breeze
• Analytical Wind Forcing
• No Stratification
• T = 15ºC ; S=35
• No heat fluxes

Figure 1: Cape Sines on the southwestern coast
of Portugal. WND (meteorological station), OND
(wave-rider buoy), ADCP and MAR (tide gauge).

• Analysis from data collected lee of Cape Sines
from 20 July to 04 August 2006 (Fig.1)

• Diurnal Variability of cross-shore profiles due to
sea breeze with a revearsal at mid-day (Fig. 2)

• Momentum balance analysis indicate that
acceleration in the depth-averaged along-shore
momentum balance is important (Fig. 3)

Figure 2. Clock-hour average-day of a) Wind vectors; b)
Significant wave height; c) Cross-shore velocity.

Figure 3. Momentum balance terms of Clock-hour average-day:
a) Along-shore; b) Cross-shore.

• Results from Lentz et al., 2008 
linear, unstratified, inner-shelf 
model forced with wave and wind 
parameters of the clock-hour 
average-day (Fig.4)

• Adding acceleration and along-
shore pressure gradient to the 
forcing reproduces closer results  
to the observations. 

• Acceleration was added using v 
from ADCP.

• Pressure gradient was the value 
that would best-fit model results to 
the observations (Fig 4a)

Figure 4. a) Diurnal Variability of Along-shore pressure gradient
found with the model; Modeled Clock-hour average-day forced
with: b) Winds; c) Winds and Waves; d) Winds, dP/dy and dv/dt; e)
Winds, Waves, dv/dt and dP/dy.
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• Adding Stratification 
• Tidal forcing
• Wave forcing
• Realistic Configuration

4. Summary
 The circulation is deeply affected by the presence of a cape and along-

shore topography variations. (Fig.8, 9, 10)
 The reversal at mid-day seen in data is probably not only due to winds. In 

every modeled profile the return flow is at bottom and not at mid-depth 
as seen in data (Fig 8).

 Away from the cape the cross-shore circulation is closer to the analytical 
Ekman solution from Marchesiello and Estrade, 2010. (Fig. 9)

 The presence of a cape and the along-shore variations of topography 
affects the circulation, adding small scale pressure gradient and other 
terms not important on straight coastline topography. (Fig. 10)

III. Cross-shore velocity for B

IV. Along-shore Momentum balances for B

Figure 5. ROMS idealized configuration with Topography for test
case A(top) and B(bottom).

Figure 6 – Wind vectors over a period of 1 day.
This analytical wind forcing was used to simulate
sea breeze, repeatedly during 15 days. Red shades
indicate wind vectors for plots in III.

Figure 9. Cross-shore velocity at 4 sections South of Cape, for 3 different hours (4h, 12h and 20h) of the Clock-hour average-day for ROMS results (1, 2, 3 & 4) and the solution
found with Marchesiello and Estrade, 2010, analytical model with equivalent topography and forced with the same wind stresses as the ROMS model.

Figure 10. Average along-shore momentum balance terms, between 15m and 20m depth, for 6 different hours (4h, 8h, 12h, 16h, 20h and 24h) of the Clock-hour average -day for ROMS results.
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Figure 7 – Model grid with bathymetry and:
yellow and red stars – locations of Diurnal
Variability of Cross-shore flow for A and B (II); and
black lines – sections of Cross-shore velocity
plotted in Cross-shore velocity for B (III)
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Figure 8. ROMS A(left) and B(right) Modeled Clock-hour average-day for cross-shore velocity at 4 locations
North of Cape (top yellow square) and 4 locations South of Cape (bottom red square), all at 12-m depth.
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