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INTRODUCTION

* Akey issue in the study of natural systems is how
to identify patterns or structures in data
sequences in order to reduce the uncertainty
about non-observed states. :
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» Algorithmic complexity of a system(Chaitin 1987): for an
observer, a process will be more ‘complex’ as requiring
more information to describe the observed trajectories.

Minimum SAC System
algoritmic
complexity

Maximum algoritmic
Significant algoritmic complexity
complexity

 Kolmogorov, Chaitin: The complexity can be measured as the

minimum number of bits to be "transmitted"
the entire sequence without any ambiguity.
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* From the perspective of information theory, the observed randomness
of a signal can be explained, to some degree, by the limited observation
capabilities of the actual process:

Hydrological system:
y y y Observer:

>

< C: NoisthanneI
P(X|Xc)

> Decoding

X - Set of actual system signals
X : Set of observables
X¢ : Observed signals at channel capacity

~

P(X|Xc)  : Probability of system signal given the available observations

* The capability to completely capture the signal dynamics is related to
the channel bandwidth, measured as the maximum sampling frequency
— f, which, if higher than a given threshold — f _, the signal can be
completely recovered with virtually zero probai)ility of error for a
given signal to noise ratio
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Methods

* |In aSACsystem, is necessary to adopt a formalization of the
uncertainty in the data and its transition properties, i.e. an
stochastic differential equation (Langevin):

e
d—t‘ = g;(X, ) + h; (X, ) * T(£)

* Where
— g,(X,t) is the deterministic kernel of the vector field
— I'(t) is a non-periodic and irregular signal (noise) and
— h;(X, t) is a transformation that adjusts the noise dynamic influence.

— In this equation, each X; is a random process. Consequently, the
solution of the equation is the evolution of the probability density
curve P(X, t) given a set of initial conditions and the uncertainty of

the system.
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Methods

From the previous equation, If assumed that for some type of systems,
local observations at sampling frequency f, contain enough information to
estimate unobserved states within a lead time interval - T, a simple
adaptive linearization method can be derived to iteratively
calculate/update optimal vector field estimation from incoming data:

¢

Q4T = Dk=1 Zle Cijk (t)ij’k (t) +y,(t) +(t) [1]

Where:

* Wg(t) is am X p matrix containing a subset of discrete observations in
the interval [t — p, t] at frequency f

* &isarandom variable distributed as P(r|X = X,.7).

* Eachc;;, andy. are model coefficients
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Identifying the optimal:

* Sampling frequency
* System state dimensionality: Shape and size of W,(t) the
m X p matrix containing a subset of discrete observations
- 551,tt %m,t—p-
W, (t) = : : :

Xit—p 7 Xmt—p,
* Parameterization window length — 6: is defined as the span of
local states of the system in the interval [t — 6, t] : W£(t),

We(t —1/f), ..., We(t — 8/f) todetermine c;j;, and y, at
instant t
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“““““ Optimality criteria

* To asolution at the time t, if the prediction error defined as the following
differences:

A = xlt+T xlt+T

* Usually, an exhaustive search algorithm using the objective function
min — (§/0,), defined as the ratio between the standard deviation of
square of the prediction error S and standard deviation of the signal
increments, is able to identify optimal state dimensionality— W (t)

Parametrization window length — 8 and sampling frequency — n/f ina
reasonable time:

= VSN
Op = \/Z(%imr - %it)z/N

* According to the Russian Hydrometeorological Center (Appolov 1974), the

value of S/a, must be less than 0.8 to accept that the model exceeds
pgiveforecast.




1000000 1200000

Pontificia Universidad

JAVERIANA

Bogota

=3
S
g
3

1600000

Aplication 1
Hydrological forecasting
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Examples of optimal models output at
JAVERIANA . . .
different sampling frequencies:
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Model comparison:

AMI S/cA Forecast feasibility
Estacion
Lead Time (Hours) Forecast Lead Time (Hours) Forecast Lead Time (Hours)
1 3 6 12 1 3 6 12 1 3 6 12

Bolombolo (2620708) 0.99| 0.97| 0.92 0.768| 0.955( 0.816 Viable
La coquera (2624702) 1.00| 0.98| 0.95 091 0.759| 0.762 0.855 0.857 | Viable | Viable
El Banco (2502702) 1.00| 1.00| 1.00 1.00f 0.913 0.703 0.656 0.616 Viable |Viable] Viable
Narino (2123701) 1.00| 0.99( 0.94 0.500| 0.628( 0.858 Viable
Pte. Balseadero (2104701) 0.90| 0.95| 0.82 0.48| 0.983| 0.774| 0.828 0.919 Viable
PtoAraujo (2312702) 1.00| 0.94| 0.97 0.93| 0.738| 0.953| 0.845 0.790| Viable
Pto. Berrio (2309703) 0.90( 0.95| 0.82 0.48( 0.812] 0.725 0.874 0.818 Viable
Pto. Salgar (2303701) 1.00| 0.99| 0.98 0.436| 0.533( 0.520 Viable | Viable [Viable
Purificacion (2502702) 1.00| 0.97| 0.86 0.72| 0.553| 0.878| 0.917 0.925| Viable
Salado Blanco (2101704) 0.98( 0.93| 0.83 0.66 1.107 1.116 0.915 0.858
ng Victorig-A2010/C 1.00( 1.00| 0.99 0.97 1.033 0.849 0.923 0.964

CC




ontificia Universidad

Aplication 2: Phase Space Base Stage-

Discharge Decoding

* Conventionally the stage-discharge decoding function is a bi-univocal
relationship between “real” flow and water level at the point where the
measurement is performed.

e Usually is determined by fitting a curve to known points of level and flow
records obtained in gauging campaigns.
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Conventional :
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Conclusions (1)

 Here is proposed a simple adaptive linearization method to
characterize signals from SAC systems, with an empirical approach
to define optimum sampling frequency. This approach is associated
with the channel capacity theorem proposed by Shannon, in
particular, the sampling frequency relation with the ability to
accurately predict the state transitions of a system.

* The method leads to computationally simple adaptive models. This
feature offers some interesting attributes for forecasting
applications in real time. The first and most important is the ability
to continually adjust and unsupervised nonstationary dynamics of
the system or even build new models in case of failures or
assimilation processes of information transmission.
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Conclusions (2)

* Forexample, in the application of the method in forecasting levels and
flows in the seasons studied, the implementation of comprehensive
process of identifying optimal operator took on average less than 2
minutes for forecast horizons of hours and up to 14 minutes in forecasts
14 days.

* With regard to the implementation of a stage discharge decoder, a
technigue was proposed for estimating functional relationships based on
linearized phase space operators. It is generally found that according to
the performance criterion proposed (AMI> 0.95), the technique is
applicable and leads to a reduction of the uncertainty in the flow
decoding. However, the results show quadratic bias in the decoded values.
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