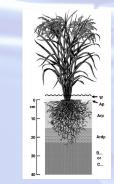
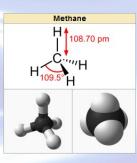
EGU Assembly 2013 SSS1.2 Element cycling and ecological functions of paddy and wetland soils Wien, 7-12 April

Effect of water and heat transport processes on methane emissions from paddy soils: a process-based model analysis

<u>Anacleto Rizzo</u> Fulvio Boano Roberto Revelli Luca Ridolfi


Politecnico di Torino, Turin (Italy) DIATI -Department of Environment, Land and Infrastructure Engineering


Why the study of CH₄ emissions from paddy?

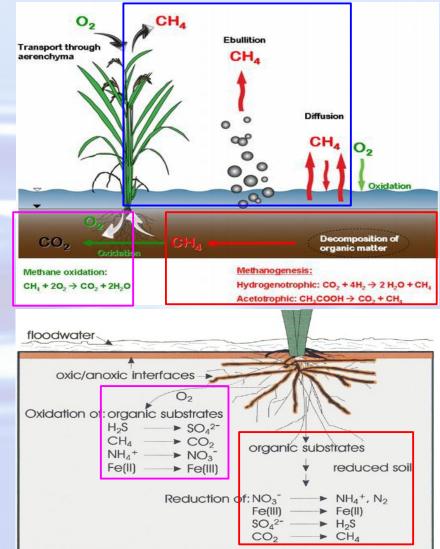
- CH_4 potent $GHG \rightarrow high CH_4$ emissions from paddy \rightarrow global warming
 - 9-19% global CH₄ emissions
 - 15-26% anthropogenic CH₄ emissions
- Socio-economic role of rice food
 - staple food for Asian population
 - (North-)Italy is first rice producer in Europe

• Speculative - multidisciplinarity

- Eco-Physiology
- Pedology
- Biogeochimistry
- Hydrology
- Agronomy
- Engineering

CH₄ dynamics in paddy soil

CH₄ production

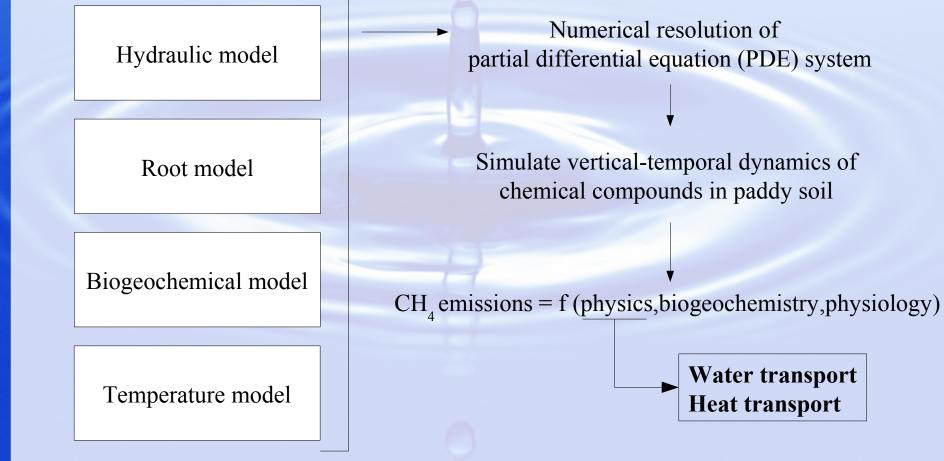

- Microbial decomposition of dissolved organic matter (energy source) in anaerobic conditions due to flooding irrigation
- Microbial competition: CH₄ is produced after that more energetically favourable electron acceptors (e.g. Fe(III)) are reduced

• CH₄ oxidation

- Atmospheric O₂ released from roots through aerenchyma
- CH_4 oxidation 10 50 % CH_4 produced

• CH₄ emission

- Plant mediated (aerenchyma) ($\approx 90\%$)
- Ebullition ($\approx 8\%$)
- Diffusion ($\approx 2\%$)


Process-based model approach to investigate the effect on CH_A emissions of:

• Water transport process

- current process-based models neglect or oversimplify water flow effects
- Heat transport process
 - CH₄ production strongly influenced by temperature variations
 - Lowering ponding water temperature (LPWT) within the optimal range of rice plant development \rightarrow alternative and low-cost CH₄ mitigation strategy
 - LPWT feasibility?
 - Irrigating with slightly colder water
 - Increasing ponding water depth

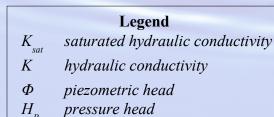
Model framework

- Monodimensional along vertical depth
- 4 distinct and dependent modules

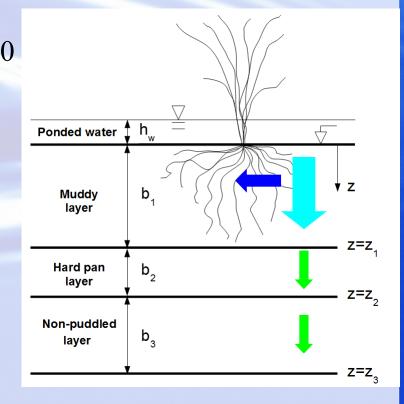
Hydraulic model

• Muddy layer

saturated + roots \rightarrow Eq. Darcy + S_r


$$\frac{\partial}{\partial z} \left(-K_{1, sat} \frac{\partial \Phi_1}{\partial z} \right) = \underline{S_r}$$

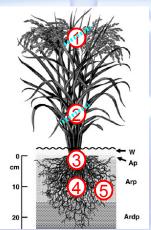
• Hard pan layer


saturated \rightarrow Eq. Darcy $\frac{\partial}{\partial z} \left(-K_{2,sat} \frac{\partial \Phi_2}{\partial z}\right) = 0$

• Non-puddled layer

unsaturated (Eq. Richards) $H_p(z) = \cot \rightarrow q(z) = \cot z$

q infiltration rate



Roots model

- Spatial and temporal variability of root features (e.g. biomass)
 - Exponential root density distribution \rightarrow spatial variability
 - Plant development function \rightarrow temporal variability

Plant-root gas conductivity

- ① micropores (neglected)
- 2 shoot (neglected)
- ③ root-shoot
- 4 root
- 5 root-soil

$$Flux = \underline{k} (\Delta C)$$

Plant features

- root-shoot \rightarrow [*Groot et al.*, 2005]
- OPR diffusivity \rightarrow [Kotula et al., 2009]
- Gas mass balance equations within root aerenchyma (PDE system)
 - O_2 and CH_4
 - Aerenchyma volume
 - Root conductivity
 - O₂ respiration, root-soil flux
 - root-atmosphere exchange \rightarrow Boundary condition

$$\underline{\varepsilon \, RVD} \, \frac{\partial \, C^g}{\partial t} = -\frac{\partial}{\partial \, z} \left(\underline{\varepsilon \, RVD} \, D_a \frac{\partial \, C^g}{\partial \, z} \right) + R$$

Biogeochemical model

• Mass balance equations (PDE system)

 $\frac{\partial C^s}{\partial t} = R$

- Dissolved species
 - DOC
 - O₂
 - NO₃⁻
 - NH₄⁺
 - Fe_2^+
 - CH₄
- Solid species
 - SOC
 - SOC dead root
 - Fe(III)

$$\left(\theta + \rho \frac{\partial C_{ads}^{s}}{\partial C^{l}}\right) \frac{\partial C^{l}}{\partial t} = -\frac{\partial}{\partial z} \left(q C^{l} - \theta D_{h} \frac{\partial C^{l}}{\partial z}\right) + R + R_{p} + R_{e}$$

- Biogeochemical reactions
- Transport by water flow
- Dispersive transport
- Root uptake
- adsorption
- ebullition (CH₄)

Legend
$$C^s_{ads}$$
sorbed solid concentration C^l dissolved concentration C^s solid concentration θ solid concentration θ solid concentration $\rho_{,}$ bulk density $D_{h,}$ coefficient of hydrodynamic dispersion q infiltration rateDOCdissolved organic carbonSOCsolid organic carbon

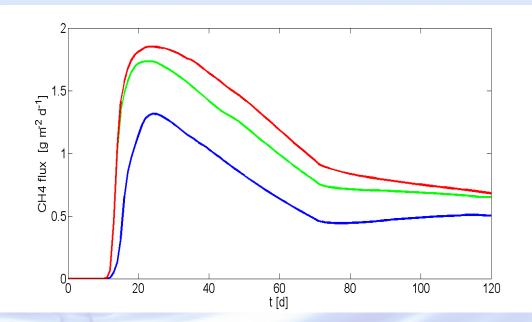
Temperature model

• Heat transport equation \rightarrow soil temperature vertical profile

- top BC \rightarrow sinusoidal ponding water temperature T_w
- $LPWT \rightarrow T_{W} \Delta T_{LPWT}$

${oldsymbol{Q}}_{_{10}}$ approach

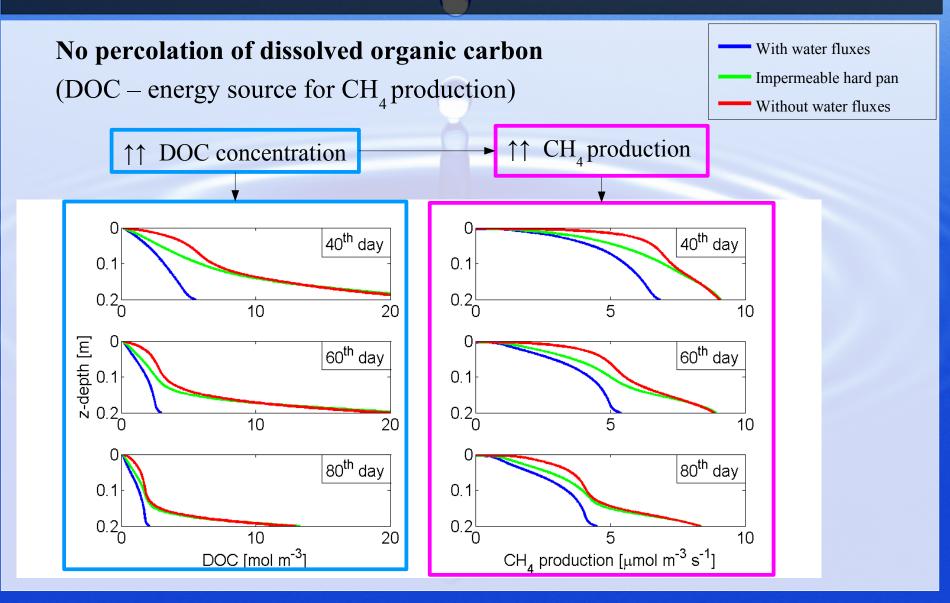
- biogeochemical parameters (e.g. kinetic constants)
- physical parameters (e.g. diffusion coefficients)
- physiological parameters (e.g. root-tiller conductivity)


$$c \rho \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) - c_W \rho_W q \frac{\partial T}{\partial z}$$

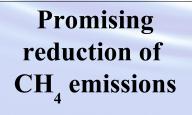
$$\frac{\text{Legend}}{\prod_{\substack{n \in \mathbb{N} \\ n \in \mathbb$$

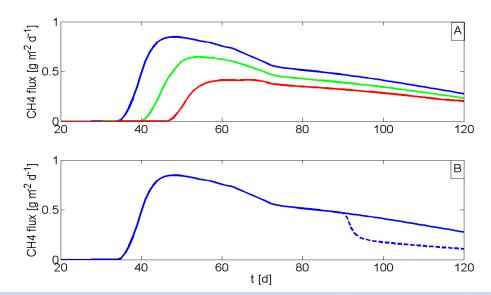
Results: effect of water transport

Simulations


- with water fluxes
- with root water uptake only without percolation (impermeable hard pan) [Xu et al., 2007]
- without water fluxes

Overestimation of CH_4 emissions


- + 53.7 % on daily minimum
 + 40.8 % on daily maximum
 + 66.8 % on total emissions


Results: effect of water transport

Results: effect of heat transport \rightarrow LPWT

- Simulations
 - no LPWT
 - LPWT on the whole growing season (120 days)
 - $\Delta T_{LPWT} = 1 \,^{\circ}\text{C} \rightarrow -26.4 \,^{\circ}\text{\%}$ on total emissions
 - $\Delta T_{LPWT} = 2^{\circ}C \rightarrow -49.5$ % on total emissions
 - LPWT only in the ripening stage (last 30 days \downarrow T sensitive of rice plant $\uparrow \Delta T_{LPWT}$) • $\Delta T_{LPWT} = 5^{\circ}C \rightarrow -11.9$ % on total emissions

Conclusions

- New process-based model for simulate CH₄ emissions from paddy fields
 - Soil stratigraphy
 - Hydraulic
 - Roots
 - Biogeochemistry
 - Temperature
- Results
 - Effect of water transport: Neglection \rightarrow simulation of overestimated CH₄ emissions
 - Effect of heat transport: LPWT promising mitigation strategy for CH_{A} emissions

• Future developments

- Modeling N₂O emissions (other GHG)
- Modeling wet-dry cycle \rightarrow saturated/unsaturated \rightarrow CH₄ emissions mitigation
- Modeling plant eco-physiology $\rightarrow CH_4$ mitigation vs. plant stress

For more details see:

Rizzo, A., F. Boano, R. Revelli, and L. Ridolfi 2013, Role of water flow in modeling methane emissions from flooded paddy soils, *Adv. Water Resour.*, 52, 261-274