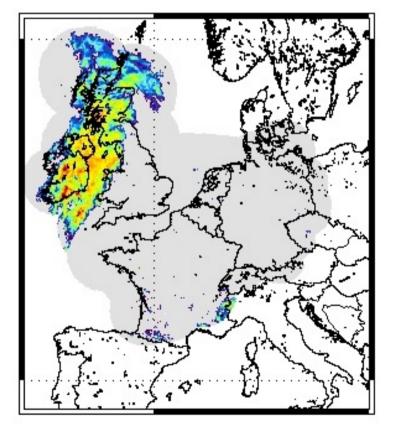
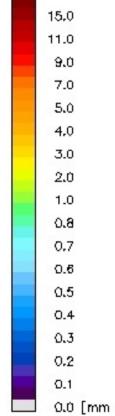

Satellite-based VIS/IR multispectral screening of precipitating clouds: A case study during summer at mid-latitudes (\mathbf{i})

1. INTRODUCTION

- \diamond The detection of precipitating clouds from geostationary sensors provides a characterization on time scales consistent with the nature and development of precipitating systems and oriented to potential operational applications.
- \diamond The aim is to implement a precipitating cloud (PC) detection methodology based on MSG spectral channels and rain rates from the NIMROD radar network and to evaluate its performances against NIMROD data and other satellite based PC detection techniques.


2. DATA SETS



MSG-SEVIRI DATA

17/06/2009 0630 UTC BT at 10.8 µm

- \diamond Data from summer 2009 (JJA) \diamond Channels: 0.6, 1.6 (daytime), 3.9 (nighttime), 6.2, 8.7, 10.8, and 12.0 µm
- \diamond Cloudy pixel selection: CTTH and CEFFECT (PGE03) from SAF NWC (https://www.nwcsaf.org)
- ♦ Correction for parallax error: CTTH and routine elaborated by the Convection Working Group (http://www.convection-wg.org)

NIMROD c-band radar network: rain rate product (http://badc.nerc.ac.uk)

17/06/2009 0630 UTC

- \diamond North-West Europe composite: 5 km spatial resolution, 15 min refresh time
- \diamond A matching method based on the distance between MSG and radar pixels was implemented to determine if a MSG pixel is covered by PC or not (rain rate > 0.1 mm h^{-1})

E. Cattani, C. Acquistapace, S. Laviola, and V. Levizzani **CNR**, Institute of Atmospheric Sciences and Climate, Bologna, Italy

3. METHODOLOGY

(Thies et al., Atmos. Chem. Phys., 2008; Thies et al., Meteorol. Appl., 2008

$$PI(x_1,...,x_n) = \frac{N_p(x_1,...,x_n)}{N_p(x_1,...,x_n) + N_{np}(x_1,...,x_n)}$$

Look-up tables of Probability Index (PI) \diamond July and August 2009 data sets x_1, \dots, x_n : MSG spectral features, 0.6/1.6 (reflectances ratio, daytime), BTD(3.9-10.8) (nighttime), BT10.8, BTD(10.8-12), BTD(6.2-10.8), BTD(8.7-10.8) $A = N_p$ and N_{np} : frequencies of PC and non-PC pixels having x_1, \dots, x_n values for the selected features

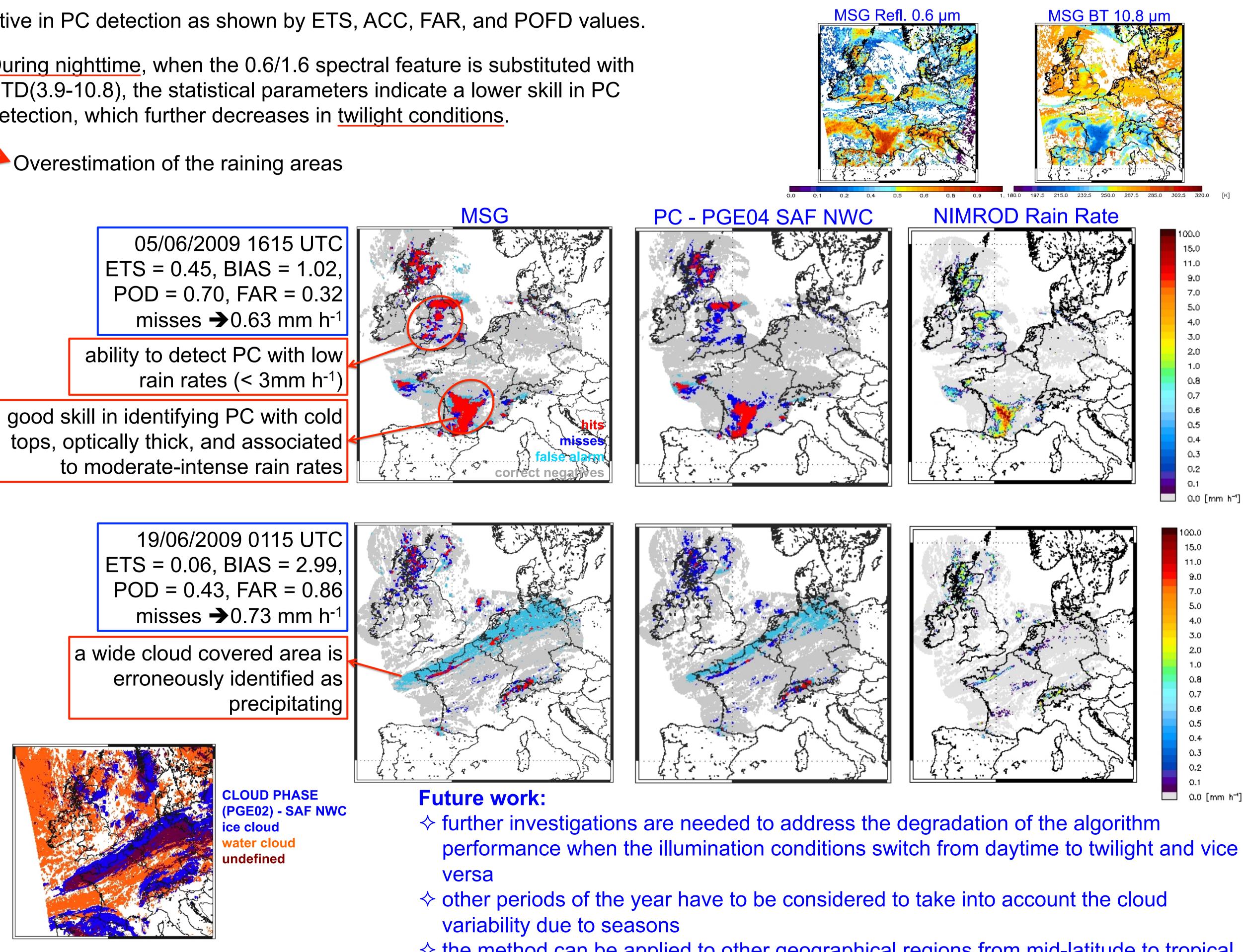
PC detection $PI(x_1,...,x_n) > PI_{th}$ with threshold values determined by maximizing the Equitable Threat Score (ETS)

4. RESULTS and CONCLUSIONS

The daytime approach is most effective in PC detection as shown by ETS, ACC, FAR, and POFD values.

	Day	Night	Twilight	
ACC	0.88	0.76	0.84	
BIAS	1.15	1.70	1.27	
POD	0.60	0.66	0.48	
FAR	0.48	0.61	0.62	
POFD	0.08	0.21	0.11	
ETS	0.33	0.21	0.20	
НК	0.52	0.45	0.37	

June 2009 – PC detection algorithm


vs NIMROD rain rates

	mean	stdev
ACC	0.87	0.07
BIAS	1.45	1.89
POD	0.47	0.17
FAR	0.61	0.16
POFD	0.09	0.06
ETS	0.22	0.10
HK	0.38	0.15
PGE04	mean	stdev
ACC	0.90	0.06
BIAS	0.80	0.69
POD	0.29	0.20
FAR	0.57	0.21
POFD	0.05	0.05
ETS	0.16	0.11

June 2009 – PC detection algorithm vs Precipitating Cloud product (PGE04) from the SAF NWC

During nighttime, when the 0.6/1.6 spectral feature is substituted with BTD(3.9-10.8), the statistical parameters indicate a lower skill in PC detection, which further decreases in twilight conditions.

Overestimation of the raining areas

 \diamond the method can be applied to other geographical regions from mid-latitude to tropical areas

