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 Aim

Research topic:

Forecast uncertainties for precipitiation over complex terrain.

Method:

Determine uncertainties with many, slightly different forecasts using a
specialized precipitation model
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 Linear Model advantages

easy to achieve a higher horizontal resolution

very fast compared to current complex models

1000+ instances in a short amount of time

to sample probability distribution

Allows for
probabilistic forecasts through a significant number of experiments

But: only for stratiform precipitation (winter)
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 Example Tyrolean avalanche service

data from
global fore-
cast model

European Centre for Medium Range Weather
Forecast (ECMWF)
16 km horizontal resolution
51 variations (Ensemble system)
Temperature, Wind, . . . at upstream grid points

split Alps
in sub-

domains

modify
each box

IBK

new topogra-
phy with 500m

EC topogra-
phy with 16km

add variations
in e.g. wind

approx. 500
setups PER box

PER timestep

Linear
Model

Linear modelapprox. 500
forecasts PER box

extract /
visualize

send
to LWD
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 A suitable infrastructure: Cloud Computing

Cloud
provider

e.g.:
Amazon

Lunacloud
...

arbitrary
number

rented
in 1h

increments

CPU
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CPU
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Middleware:

interacts
with user
schedules
executes
transfers

All exper-
iments

Results
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 Test results

PS2 = 2 x number of experiments of PS1

1 Core 2GB 2 Core 4GB 4 Core 8GB

application is
scalable

max speedup: ∼ 21

small effect of
varying instance

types

private and public
Cloud show similar

performance
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 Conclusion

cost effective

very flexible, suits operational and
research aspects

full control of software
environment

data transfers not as fast

data security

MPI/OpenMP just emerging

Cloud Computing

Cheap and flexible alternative to self-owned computational re-
sources for certain types of meteorological applications
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