

The RainCloud project: Harnessing Cloud Computing for a meteorological application at the Tyrolean Avalanche Service

Felix Schüller¹, Simon Ostermann², Matthias Janetschek², Radu Prodan², and Georg Mayr¹

(1) Institute of Meteorology and Geophysics, University of Innsbruck, Austria, (2) Parallel Systems Group, University of Innsbruck, Austria

April 8th, 2013, EGU Vienna

funded by Standortagentur Tirol

Outline

SIMPLY EXPLAINED - PART 17: CLOUD COMPUTING

Outline

SIMPLY EXPLAINED - PART 17: CLOUD COMPUTING

- Aim
- Meteorological model
- Application
- 4 Cloud Computing results
- 6 Conclusions

Research topic:

Forecast uncertainties for precipitiation over complex terrain.

Research topic:

Forecast uncertainties for precipitiation over complex terrain.

Method:

Determine uncertainties with many, slightly different forecasts using a specialized precipitation model

$$P = \frac{1}{1 + \sigma^0 \tau_f^0} \left[\frac{S^0}{1 + \sigma^0 \tau_c^0} + \frac{S^1}{(1 + \sigma^1 \tau_c^1)(1 + \sigma^1 \tau_f^1)} \right]$$

$$P = \frac{1}{1 + \sigma^0 \tau_f^0} \left[\frac{S^0}{1 + \sigma^0 \tau_c^0} + \frac{S^1}{(1 + \sigma^1 \tau_c^1)(1 + \sigma^1 \tau_f^1)} \right]$$

$$P = \frac{1}{1 + \sigma^0 \tau_f^0} \left[\frac{S^0}{1 + \sigma^0 \tau_c^0} + \frac{S^1}{(1 + \sigma^1 \tau_c^1)(1 + \sigma^1 \tau_f^1)} \right]$$

Barstad, Schueller 2011

4/10

$$P = \frac{1}{1 + (\sigma^0)_f^0} \left[\frac{S^0}{1 + (\sigma^0)_c^0} + \frac{S^1}{(1 + (\sigma^1)_c^1)(1 + (\sigma^1)_f^1)} \right]$$

Barstad, Schueller 2011

felix.schueller@uibk.ac.at

$$P = \frac{1}{1 + \sigma(\tau_f^0)} \left[\frac{S^0}{1 + \sigma(\tau_c^0)} + \frac{S^1}{(1 + \sigma(\tau_c^1)(1 + \sigma(\tau_f^1)))} \right]$$

$$P = \underbrace{\frac{1}{1 + \sigma^0 \tau_f^0} \left[\frac{S^0}{1 + \sigma^0 \tau_c^0} + \frac{S^1}{(1 + \sigma^1 \tau_c^1)(1 + \sigma^1 \tau_f^1)} \right]}_{}$$

$$P = \frac{1}{1 + \sigma^0 \tau_f^0} \left[\frac{S^0}{1 + \sigma^0 \tau_c^0} + \frac{S^1}{(1 + \sigma^1 \tau_c^1)(1 + \sigma^1 \tau_f^1)} \right]$$

Linear Model advantages

- easy to achieve a higher horizontal resolution
- very fast compared to current complex models
- 1000+ instances in a short amount of time
 - to sample probability distribution

Linear Model advantages

- easy to achieve a higher horizontal resolution
- very fast compared to current complex models
- 1000+ instances in a short amount of time
 - to sample probability distribution

Allows for

probabilistic forecasts through a significant number of experiments

But: only for stratiform precipitation (winter)

data from global forecast model

- European Centre for Medium Range Weather Forecast (ECMWF)
- 16 km horizontal resolution
- 51 variations (Ensemble system)
- Temperature, Wind, ... at upstream grid points

Institut für Meteorologie und Geophysik · Universität Innsbruck

Example Tyrolean avalanche service

RainCloud

Cloud provider e.g.: Amazon Lunacloud

application is scalable

application is scalable

 $max \; speedup: \sim 21$

application is scalable

max speedup: \sim 21

small effect of varying instance types

application is scalable

max speedup: \sim 21

small effect of varying instance types

private and public Cloud show similar performance

Conclusion

cost effective

very flexible, suits operational and research aspects

full control of software environment

Conclusion

cost effective

very flexible, suits operational and research aspects

full control of software environment

data transfers not as fast

data security

MPI/OpenMP just emerging

Conclusion

cost effective

data transfers not as fast

very flexible, suits operational and research aspects

data security

full control of software environment

MPI/OpenMP just emerging

Cloud Computing

Cheap and flexible alternative to self-owned computational resources for certain types of meteorological applications

HOW TO DISILLUSION YOUR BOSS

Funded by:

- Standortagentur Tirol -Project RainCloud
- Austrian Academy of Sciences (DOC grant)

Cartoons by the awesome http://www.geek-and-poke.com/