Menu


Find the EGU on

Follow us on Twitter Find us on Facebook Find us on Google+ Find us on LinkedIn Find us on YouTube

Tag your tweets with #egu2013

GM9.2/HS9.8/NH3.15

Geomorphic and hydrological processes in proglacial areas under conditions of (rapid) deglaciation (co-organized)
Convener: Tobias Heckmann  | Co-Conveners: Christian Briese , Reynald Delaloye , Samuel McColl , David Morche , Philip Owens 
Orals
 / Fri, 12 Apr, 13:30–15:00  / Room G2
Posters
 / Attendance Thu, 11 Apr, 17:30–19:00  / Blue Posters
<table class="mo_scheduling_string" style="border-collapse: collapse; clear:left;"><tr><td style="vertical-align: top;"><span class="apl_addon_standard_action_link" style="text-decoration: none;">Poster Summaries & Discussions</span>:&nbsp;<a href="https://meetingorganizer.copernicus.org/EGU2013/session/13543" target="_blank" title="Open PSD15.5 Details" style="clear:left;">PSD15.5</a> &nbsp;/ <span class="mo_scheduling_string_time">Thu, 11 Apr, 15:30</span><span class="mo_scheduling_string_time">&ndash;16:15</span> &nbsp;/ <span class="mo_scheduling_string_place" title=""></span> &nbsp;</td></tr></table>
Alpine proglacial areas have been witnessing major glacier melting since the end of the Little Ice Age. Glacier retreat and associated processes cause enhanced morphodynamics within the glacier forefield, which have been conceptualised as a “paraglacial adjustment” to non-glacial conditions. This adjustment may include
(a) mass movements in the wake of glacial debuttressing (from rockfall to deep-seated landslides),
(b) deformation of marginal and terminal moraines,
(c) ) enhanced fluvial dynamics on hillslopes (gully formation on freshly exposed moraines) and in channels (increasing sediment availability),
(d) the formation of proglacial lakes, interrupting (coarse) sediment transport in proglacial meltwater streams, and
(e) debris flows originating from the mobilisation of previously frozen glacigenic sediments or the outflow from proglacial lakes
Important problems for hydrological and geomorphological research include slope stability, rates of sediment flux in space and time, the coupling and interaction of hillslope and channel processes, and the potential impact of changes in proglacial areas on downstream parts of alpine catchments (in this respect, the issue may become relevant for natural hazards research as well). However, multi-process, quantitative studies on proglacial morphodynamics and sediment budgets are rare.
We cordially invite contributions dealing with recent changes in geomorphic and hydrological processes in proglacial areas following (rapid) deglaciation, especially with respect to the rockslope response and the quantification of sediment fluxes and budgets. Conceptual (e.g. paraglacial geomorphology), methodological (e.g. Radar interferometry, LiDAR, photogrammetry, geophysics) and modelling (e.g. landscape evolution of proglacial areas) studies are also highly welcome.
The session will include keynote talks by Denis Mercier (University of Nantes) and Etienne Cossart (University of Paris).

A special issue of Earth Surface Processes and Landforms is planned. If you consider contributing a paper, you're welcome to contact T. Heckmann, S. McColl or D. Morche and send a short abstract.