NH3.13 Numerical modeling for the analysis of failure processes in geomaterials and geostructures |
Convener: Riccardo Castellanza | Co-Conveners: Jose Antonio Fernandez Merodo , Piernicola Lollino , Stefano Utili |
Several numerical modelling techniques are nowadays available to investigate in detail both the failure mechanisms of boundary value problems involving soil and rock masses, such as slope failures, failures of underground caves, collapses of levees and dams etc.; and the predisposing and triggering factors of the mechanisms. The most popular numerical methods include FEM (Finite Element Method), FDM (Finite Difference Method), DEM (Distinct Element Method), SPH (Smoothed Particle Hydrodynamics), depending on the type of problem to be analysed.
These methods provide a powerful tool for the assessment of the hazards leading to geo-instabilities and as a consequence they can be very useful for the prediction of the failure mechanisms and/or to establish the best mitigation strategies. Indeed, numerical analyses allow investigating the stress-strain evolution of the soil/rock mass up to the development of a full global failure, both for localized and diffused failure processes, provided that an adequate reconstruction of the different factors influencing the boundary value problem at hand is carried out.
Therefore, first the numerical method is chosen, then the geometry domain, the initial and boundary conditions, the constitutive model and the constitutive parameters, the eventual role of water and/or air within the soil/rock structure represent stages of the analysis that significantly affect the capability of the numerical model to correctly simulate the real physical processes.
The session is aimed at collecting all the scientific contributions regarding any topic about numerical modelling of geomaterial failure processes: from the choice of the numerical methods to the assessment of the initial and boundary conditions, the influence of the material constitutive model and/or specific material parameter, the problems related to multi-phase modelling. Both sensitivity analyses and class-A predictions are solicited; as well as the comparison of numerical results with field evidences or in-situ monitoring from case studies will be particularly appreciated.