

High-rate GPS seismology for the 2013 ML 6.4 Wanrung, Taiwan earthquake

Huang-Kai Hung (1), Ruey-Juin Rau (1), Gabriele Colosimo (2), Elisa Benedetti (2), Mara Branzanti (2), Mattia Crespi (2), and Augusto Mazzoni (2)

(1) Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (bradhung@mail.ncku.edu.tw), (2) DICEA–Area di Geodesia e Geomatica, Università di Roma “La Sapienza,” Rome, Italy (mattia.crespi@uniroma1.it)

The 31 October 2013 ML 6.4 Wanrung earthquake was well recorded by twenty-five 1-Hz and sixteen 10-Hz GPS receivers and twenty-five seismometers located within the epicentral distance of about 80 km. Precise Point Positioning kinematic solutions estimated by software VADASE, RTKLIB, and GIPSY are used to obtain the co-seismic deformations and dynamic displacements. We used seismograms recorded by broadband seismometers and strong motion accelerometers to verify the capability of high-rate GPS for the detections of the body waves and surface waves generated by a moderate-size earthquake. Results show that the overall standard deviations of the position time series are \sim 6 mm and \sim 20 mm in the horizontal and vertical components, respectively after applying spatial filtering. Largest co-seismic displacement derived from high-rate GPS is nearly twenty centimeter at 5 km northeast of the epicenter. S waves and surface waves are successfully detected by motions of 10-Hz GPS and double-integrated accelerometers within the 15 km epicentral distance. We also found that a group of later phases of \sim 1-2.5 cm peak-to-peak amplitudes with a frequency range of 0.2-0.5 Hz located within the Longitudinal Valley, a suture zone composed of Holocene thick sediment deposits. The 2013 Wanrung, Taiwan earthquake recorded by the high-rate GPS network in Taiwan demonstrates the feasibility of GPS Seismology for a moderate size earthquake at a local scale.