

N₂O and $\delta^{15}\text{N-N}_2\text{O}$ and $\delta^{18}\text{O-N}_2\text{O}$ from polar ice cores: interpretable data for interglacials

Michael Bock, Jochen Schmitt, Barbara Seth, Jonas Beck, and Hubertus Fischer

Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland (bock@climate.unibe.ch)

Ice cores provide a wealth of information on climate change. For instance, the history of the atmospheric greenhouse gas N₂O can be reconstructed using air entrapped in polar ice cores. N₂O has several sources in both terrestrial and marine ecosystems, predominantly wetland soils and oxygen minimum zones in the ocean. N₂O records generally follow the climatic changes during the glacial-interglacial cycles with higher N₂O mixing ratios during warmer climate stages. However, the underlying processes driving these changes are difficult to identify from N₂O mixing ratios alone. Additional information on the individual sources and sinks are provided by stable isotope measurements. The emission fluxes of the dominant N₂O sources are ascribed to several pathways (nitification, denitrification), with characteristic fractionation factors for the nitrogen and oxygen isotope signatures of the generated N₂O ($\delta^{15}\text{N-N}_2\text{O}$ and $\delta^{18}\text{O-N}_2\text{O}$). In the end, the individual proportions of pathways are responsible for distinct $\delta^{15}\text{N-N}_2\text{O}$ and $\delta^{18}\text{O-N}_2\text{O}$ for the average terrestrial and marine sources.

Here, we present new ice core measurements of $\delta^{15}\text{N-N}_2\text{O}$ and $\delta^{18}\text{O-N}_2\text{O}$ covering the Holocene, MIS 5 and MIS 11. For the past 15 kyrs the $\delta^{15}\text{N-N}_2\text{O}$ record shows a continuous decrease starting at 15 kyrs to about 6 kyrs; during the past 6 kyrs $\delta^{15}\text{N-N}_2\text{O}$ remains rather constant. The resemblance with a recently published global reconstruction of bulk $\delta^{15}\text{N}$ is remarkable (McLauchlan et al. 2013, *Nature*). Taken at face value this could mean that mainly the terrestrial source signature changed rather than a shift in the relative proportions of the terrestrial and marine source.

The integrity of N₂O ice core records relies on the assumption that the measurements truly represent the past atmosphere. However, comparative analyses of different ice cores from the same age intervals show offsets in the N₂O mixing ratios among the records. One likely assumption is that higher mixing ratios are due to in-situ production since N₂O should not be lost in the ice. In situ production appears to be evident at least for glacial sections of some ice cores.