



## Application of a three-dimensional hydrodynamic model to the Himmerfjärden, Baltic Sea

Alexander Sokolov

Stockholm University Baltic Sea Centre, Stockholm, Sweden (alexander.sokolov@su.se)

Himmerfjärden is a coastal fjord-like bay situated in the north-western part of the Baltic Sea. The fjord has a mean depth of 17 m and a maximum depth of 52 m. The water is brackish (6 psu) with small salinity fluctuation ( $\pm 2$  psu). A sewage treatment plant, which serves about 300 000 people, discharges into the inner part of Himmerfjärden. This area is the subject of a long-term monitoring program.

We are planning to develop a publicly available modelling system for this area, which will perform short-term forecast predictions of pertinent parameters (e.g., water-levels, currents, salinity, temperature) and disseminate them to users. A key component of the system is a three-dimensional hydrodynamic model.

The open source Delft3D Flow system (<http://www.deltaresystems.com/hydro>) has been applied to model the Himmerfjärden area. Two different curvilinear grids were used to approximate the modelling domain (25 km  $\times$  50 km  $\times$  60 m). One grid has low horizontal resolution (cell size varies from 250 to 450 m) to perform long-term numerical experiments (modelling period of several months), while another grid has higher resolution (cell size varies from 120 to 250 m) to model short-term situations. In vertical direction both z-level (50 layers) and sigma coordinate (20 layers) were used. Modelling results obtained with different horizontal resolution and vertical discretisation will be presented.

This model will be a part of the operational system which provides automated integration of data streams from several information sources: meteorological forecast based on the HIRLAM model from the Finnish Meteorological Institute (<https://en.ilmatieteenlaitos.fi/open-data>), oceanographic forecast based on the HIROMB-BOOS Model developed within the Baltic community and provided by the MyOcean Project (<http://www.myocean.eu>), riverine discharge from the HYPE model provided by the Swedish Meteorological Hydrological Institute (<http://vattenwebb.smhi.se/modelarea/>).