

Analysis of Ice-Related Intra-Crater Facies in Promethei Terra, Mars

Csilla Orgel (1,2,3), Ákos Keresztfuri (4), and Stephan van Gasselt (3)

(1) Eötvös Loránd University (ELTE), Budapest, Hungary, (2) German Aerospace Center (DLR), Berlin, Germany, (3) Freie Universität Berlin (FUB), Planetary Sciences and Remote Sensing, Berlin, Germany, (4) Konkoly Astronomical Institute, Research Center for Astronomy and Earth Science (RCAES), Hungary

On Mars ice-related landforms have been identified at mid-latitudes between 30° and 50° in both hemispheres including the areas of Tempe Terra, Deuteronilus-Protomilus Mensae, Phlegra Montes and the rims of the southern-hemispheric impact basins Argyre and Hellas [1-7].

Our study area – informally termed hourglass-shaped crater [8] – is located near Reull Vallis on the eastern rim of the Hellas impact basin (39.0°S, 102.8°E). Impact-crater infill was described as debris-covered piedmont-type glacier [8] based on analysis of High Resolution Stereo Camera (HRSC) data, and implies a glacial origin with precipitation of ice during higher obliquity phases. Recent, higher-resolution image data such as data of the High Resolution Imaging Science Experiment (HiRISE) and the Context Imager (CTX) provide a more detailed picture of the lateral distribution of different small-scale surface features indicative of periglacial and/or glacial origin.

The aim of this study is to identify qualitative and quantitative characteristics of these ice-related landforms and to separate sources of water ice and related processes. Initial age determinations based on impact-crater size-frequency statistics indicate an age of 3.4 Gyr for the impact-crater and an age of approximately 75 Myr for the infill [8]. In order to identify a possible sequence of surface-feature evolution we calculated the age distribution of four major surface units which span ages between 1-47 Myr. Along with detailed age information and a separation of different processes at this confined type location of Mars young-Amazonian landscape evolution and potential cyclic signals are being reconstructed to constrain climate evolution.

1. Carr, M. H. & Schaber, G. G. 1977: Martian permafrost features.– *J. Geophys. Res.* 82, 4039-4054.
2. Squyres, S. W. 1978: Martian fretted terrain: flow of erosional debris.– *Icarus* 34, 600-613.
3. Squyres, S. W. 1979: The distribution of lobate debris aprons and similar flows on Mars.– *J. Geophys. Res.* 84, 8087-8096.
4. Lucchitta, B. K. 1981: Mars and Earth: comparison of cold-climate features.– *Icarus* 45, 264-303.
5. Lucchitta, B. K. 1984: Ice and debris in the fretted terrain, Mars.– *J. Geophys. Res.* 89, B409-B418.
6. Squyres, S. W. & Carr, M. H. 1986: Geomorphic evidence for the distribution of ground ice on Mars.– *Science* 231, 249-252.
7. Kargel, J. S. & Strom, R. G. 1992: Ancient glaciation on Mars.– *Geology* 20, 3-7.
8. Head, J. W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M., Werner, S., Milkovich, S., van Gasselt, S. & the HRSC Co-Investigator Team 2005: Tropical and mid-latitude snow and ice accumulation, flow and glaciation on Mars.– *Nature* 434, 346-351.