Geophysical Research Abstracts Vol. 16, EGU2014-1091, 2014 EGU General Assembly 2014 © Author(s) 2013. CC Attribution 3.0 License.

Kinematics of the oblique faults in the east central Gulf of Suez Rift,

Wadi Araba, Sinai Peninsula, Egypt

Mamdouh Abdeen (1) and Ashraf Abdelmaksoud (2)

(1) National Authority for Remote Sensing and Space Sciences, Geological Mapping Department, Cairo, Egypt (mamdouh.abdeen@narss.sci.eg), (2) Geology Department, Menoufiya University, Menoufiya, Egypt

The Oligo-Miocene Gulf of Suez rift is characterized by four fault trends; a rift-parallel trend, two trends oblique to the rift trend and a cross trend. The rift-parallel trend strikes 310° to 340° and is referred to as the Clysmic trend. The two trends, which are oblique to the Clysmic trend, strike 350° to 030° and 280° to 310° ; the first has been referred to as the north-oblique (N-oblique), and the second as the northwest-oblique (NW-oblique). The cross trend includes faults nearly orthogonal to the Clysmic trend i.e. they strike between 050° and 075° .

Image interpretation and detailed field mapping and structural studies at a scale of 1: 20,000 of the Wadi Araba area in southwest Sinai Peninsula indicate e Clysmic faults are mostly normal showing major dip-slip movements. The oblique faults were found to be younger than the Clysmic faults and that the N-oblique faults are characterized by major sinistral strike-slip movement, while the NW-oblique faults are characterized by major dextral strike-slip movement. Cross cutting relationship, geometry and palaeostress analysis indicate that the oblique faults are conjugate Riedel shears originated due to NE to NNE extension related to the Aqaba-Levant transform that has been active since the Middle Miocene.