

Competitive reaction of CH₂OO with SO₂ and water vapour and the thermal lifetime of CH₂OO at 293 K

Torsten Berndt (1), Heikki Junninen (2), Roy L. Mauldin III (2,3), Hartmut Herrmann (1), Markku Kulmala (2), and Mikko Sipilä (2)

(1) Institut für Troposphärenforschung, Department of Chemistry, Leipzig, Germany (berndt@tropos.de), (2) University of Helsinki, Department of Physics, Helsinki, Finland, (3) University of Colorado at Boulder, Colorado, USA

Competitive reaction of CH₂OO with SO₂ and water vapour and the thermal lifetime of CH₂OO at 293 K

T. Berndt (1), H. Junninen (2), R. L. Mauldin III (2,3), H. Herrmann (1), M. Kulmala (2), and M. Sipilä (2)

(1) Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany; (2) University of Helsinki, Department of Physics, 00014 Helsinki, Finland; (3) University of Colorado at Boulder, Department of Atmospheric and Oceanic Sciences, Boulder, Colorado 80309, USA

H₂SO₄ represents a key substance in the process of atmospheric nucleation. The importance of gas-phase products from olefin ozonolysis other than OH radicals, most likely stabilized Criegee Intermediates (sCIs), for the process of atmospheric SO₂ oxidation to H₂SO₄ has recently been discovered.

Subject of this work are investigations on H₂SO₄ formation from CH₂OO + SO₂ as a function of the water vapour content and the measurement of the CH₂OO steady state concentration starting from the ozonolysis of ethylene used for formaldehyde oxide generation. Measurements have been conducted in an atmospheric pressure flow tube at 293 K using NO₃-CI-APi-TOF mass spectrometry for H₂SO₄ detection.

The experiments show a square-dependence in H₂O for the kinetics of the reaction CH₂OO + H₂O indicating that likely the water dimer (H₂O)₂ governs the reaction with CH₂OO rather than the water monomer. This finding is in line with results from quantum chemistry. Furthermore, a sCI yield (CH₂OO) of 0.40 ± 0.18 can be deduced from the H₂SO₄ measurements in accordance with results from other experimental techniques. A CH₂OO thermal lifetime > 1 s was found as a result of CH₂OO steady state measurements for different reactant concentrations at 293 K.

The importance of H₂SO₄ formation from CH₂OO + SO₂ for atmospheric conditions is discussed based on kinetic parameters obtained in this study.