

Analyzing the vegetation response under different treatments after wildfires in NE Spain

Javier León (1), Artemi Cerdà (2), David Badía (3), Maite Echeverría (1), and Clara Martí (3)

(1) Department of Geography and Land Management. University of Zaragoza. Pedro Cerbuna 12, Zaragoza (Spain) Dept. of Geography and Land Management. University of Zaragoza. Pedro Cerbuna 12, Zaragoza (Spain) fcojleon@unizar.es, (2) Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia, Spain. artemio.cerdà@uv.es / www.soilerosion.eu, (3) Department of Agricultural Science and Environment. University of Zaragoza (Spain). badia@unizar.es

Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The socio-economic changes that occurred in the last decades have contributed to an increase in forest fires (Shakesby, 2011). There was found a change in the fire regimes in terms of frequency, size, seasonality, recurrence as well as fire intensity and severity (Keeley, 2009), which resulted in severe effects on soils, water and vegetation (Guénon et al., 2013).

Fire affects soil properties directly by the heat impact (Aznar et al., 2013), and the ash cover (Cerdà and Doerr, 2008) and the reduction of the plant cover (Neary et al., 1999). The lack of vegetation and the heating promotes changes in the soil organic matter content (González-Pérez et al., 2004), on the structural stability (Mataix-Solera et al., 2011), on the hydrophobic response (Bodí et al., 2012), and on the infiltration capacity (Cerdà, 1998a). This is why the vegetation cover and the litter are key factors on soil erosion after forest fires (Prats et al., 2013). Besides, the ash plays an important paper in the soil protection after the forest fire and after the first storms and winds (León et al., 2013; Pereira et al., 2013).

The objective of this experiment is to asses the vegetation response after a forest fire and the impact of vegetation recovery on soil erosion. The experiment consisted in a sampling of a linear transect of 10 m with samples each 2 m, under different slope position and aspect. To measure the soil erosion rates we used rainfall simulation experiments (León et al., 2013).

The experiments were carried in Castejón (UTM 30T, X671106, Y4644584) in a forest burned in 2008, in the Zuera Mountains, both located in the north of Zaragoza province (NE Spain). The soils on limestone parent material are Rendzic Phaeozem (IUSS, 2007) and the texture of Ah horizons of soils developed on limestone is sandy-loam (Badía et al., 2013).

The result shows fast and successful vegetation regeneration in the north-facing slopes, and a delayed recovery on the south-facing slopes. The soil erosion control treatments shown a very efficient response when Chipped branches covered the soil.

References

Aznar, J.M., González-Pérez, J.A., Badía, D., Martí, C. 2013. At what depth are the properties of a Gypseous forest topsoil affected by burning?. *Land Degradation and Development*, DOI: 10.1002/ldr.2258

Badía, D., Martí, C., Aznar, J.M., León, J. 2013. Influence of slope and parent rock on soil genesis and classification in semiarid mountainous environments. *Geoderma* 193-194: 13-21, doi: <http://dx.doi.org/10.1016/j.geoderma.2012.10.020>.

Bodí, M.B., Doerr, S.H., Cerdà, A., and Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. *Geoderma*, 191: 14-23.

Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. *Zeitschrift für Geomorphologie*, 42 (3) 373-398.

Cerdà, A. 1998b. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. *Canadian Journal of Soil Science* 78, 321-330.

Cerdà, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. *Catena* 74, 256-263.

González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H. 2004. The effect of fire on soil organic matter – a review. *Enviroment International*, 30: 855-870.

Guénon, R., Vennetier, M., Dupuy, N., Roussos, S., Pailler, A., Gros, R. 2013. Trends in recovery of Mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires. *Land Degradation & Development*, 24: 115–128, DOI: 10.1002/ldr.1109.

Keeley, J.E. 2009. Fire intensity, fire severity and burn severity: a brief review and suggests usage. *International Journal of Wildland Fire*, 18: 116-126.

León, J., Bodí, M.B., Cerdà, A., Badía, D., 2013. The contrasted response of ash to wetting: The effects of ash type, thickness and rainfall events. *Geoderma* 209–210, 143–152.

Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., 2011. Fire effects on soil aggregation: a review. *Earth-Science Reviews*, 109: 44-60.

Neary, D.G., Klopfatek, C.C., DeBano, L.F., Ffolliot, P. 1999. Fire effects on belowground sustainability: a review and synthesis. *Forest Ccol. Manag.*, 122: 51-71.

Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D., Jordán, A., Burguet, M. 2013. Spatial models for monitoring the spatio-temporal evolution of ashes after fire – a case study of a burnt grassland in Lithuania. *Solid Earth*, 4: 153-165.

Prats, S.A., Malvar, M.C., Simões-Vieira, D.C., MacDonald, L., and Keizer, J.J. 2013. Effectiveness of hydro-mulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. *Land Degradation & Development*, DOI: 10.1002/ldr.2236.

Shakesby, R.A. 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. *Earth Science Reviews*, 105, 71-100.