

Ozone Destruction in the Upper Troposphere/Lower Stratosphere from Short-Lived Halogens and Climate Impacts

Ryan Hossaini (1), Martyn Chipperfield (1), Stephen Montzka (2), Alex Rap (1), Sandip Dhomse (1), and Wuhu Feng (1)

(1) University of Leeds, United Kingdom (r.hossaini@leeds.ac.uk), (2) National Oceanic and Atmospheric Administration, Boulder, USA (stephen.a.montzka@noaa.gov)

Halogens released from very short-lived substances (VSLS) can deplete ozone in the upper-troposphere and lower stratosphere where the perturbation can exert a large climate impact. In addition to the known ozone loss from natural biogenic bromine VSLS, such as bromoform (CHBr3), using a global atmospheric model we show that anthropogenic chlorine VSLS such as dichloromethane (CH2Cl2) – not regulated by the Montreal Protocol – also contribute. Although this impact is small compared to bromine VSLS at present, CH2Cl2 has industrial sources and observations show its atmospheric loading is increasing rapidly. We estimate a significant radiative effect of the bromine and chlorine VSLS-driven lower stratospheric ozone destruction of -0.11 Wm-2. The largest impact comes from ozone loss at high latitudes, where column ozone decreases due to VSLS are up to 6%. The trend in anthropogenic chlorine VSLS could cause a significant radiative forcing, especially if augmented by any trend in natural bromine VSLS. We also used the model to study the impact of iodine-containing VSLS such as methyl iodide (CH3I). Of the three halogens iodine has the largest leverage to destroy lower stratospheric ozone, but current limits based on IO observations indicate only a minor impact at present.