

Shallow Magma Ocean on Vesta and Implications for the HEDs

Wladimir Neumann, Doris Breuer, and Tilman Spohn

German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany (wladimir.neumann@dlr.de)

The asteroid 4 Vesta is widely held as a differentiated object and as the parent body of the HED meteorites. However, the origin of the HEDs, which is closely linked to the differentiation processes, is still a subject of debate. In particular, various differentiation scenarios have been proposed (e.g. partial melt^[1] and residual melt^[2,3] scenario) to explain the process of HEDs' formation. Here we present results of numerical calculations of the early thermo-chemical evolution of Vesta, placing constraints on the possible differentiation scenario and on the occurrence and depth of the Vestan mantle magma ocean. We use a numerical heat conduction code^[4] that considers accretion, compaction, melting, associated changes of the material properties, partitioning of ²⁶Al, advective heat transport, differentiation by porous flow, and effective cooling of a magma ocean by convection. We show that partitioning of ²⁶Al and its transport with the silicate melt is crucial for the formation of a magma ocean. Previous models that neglect this effect^[5,6,7] infer a whole-mantle magma ocean beneath a solid crust. We show that in contrast to these models a deep magma ocean does not form if partitioning of ²⁶Al is considered: Radioactive nuclides are enriched in the melt and relocated towards the surface. Due to the over-production of the radiogenic heat in a shallow layer, the melt fraction increases rapidly above a critical melting threshold (here we assume 50 % of melt) for which the rheology is dominated by the liquid phase, i.e. a magma ocean forms. For formation times of Vesta <1.5 Ma relative to the CAIs, a thin shallow convecting magma ocean with a thickness of 1 to a few tens of km is obtained, above which a basaltic crust forms. The lifetime of the magma ocean is $\approx O(10^5)$ years and convection is accompanied by the extrusion of ²⁶Al at the surface. The interior differentiates from the outside inward with a mantle which is depleted in 26 Al and a core which forms within ≈ 0.3 Ma. The lower mantle experiences a maximal melt fraction of 45 % suggesting a harzburgitic to dunitic composition. These findings strongly depend on the silicate melt viscosity – the higher the viscosity, the lower the migration velocity and the thicker the magma ocean. For basaltic melts derived from chondritic material, viscosities of \approx 1-100 Pa s have been proposed^[8]. For 1 Pa s, we obtain a 1 km thick magma ocean with a lifetime of $O(10^5)$ a, which crystallises rapidly. For 10 Pa s, the thickness increases to ≈ 10 km and the lifetime is prolonged to 1 Ma. In the extreme case of 100 Pa s, the magma ocean even extends to the depth of \approx 100 km. Core, mantle and crust from almost simultaneously, and the melt fraction in the mantle remains below 50 %. Our results suggest that previous models of Vesta (which neglect partitioning of 26 Al and/or convection) overestimate the temperature in the interior and thus the amount of partial melting^[5,6,7]. Thus, our results contradict the idea of a deep magma ocean on Vesta, but support the formation of non-cumulative eucrites by percolation of early partial melt while diogenites and cumulate eucrites form by rapid crystallization of a shallow magma ocean. This is consistent with the rapid time scale for magma ocean crystallization of Al-free diogenites^[2]. Silicate melt viscosity values of up to 100 Pas suggest that the shallow magma ocean can be up to 100 km deep. A few tens of km thick shallow magma ocean would in fact be consistent with the assumption of Vesta's crust having an average thickness of 35-85 km with an upper eucritic and a lower orthopyroxene-rich layer^[9].

[1] Stolper, E., Nature 258, 1975. [2] Schiller, M. et al., AJL 740, 2011. [3] Beck A. W. and McSween, H. Y., MPS 45, 2010. [4] Neumann, W. et al., A&A 543, 2012. [5] Righter, K. and Drake, M. J., MPS 32, 1997. [6] Ghosh, A. and, McSween, H. Y., Icarus 134, 1998. [7] Gupta, G. and Sahijpal, S., JGR 115, 2010. [8] Giordano, D. et al., EPSL 271, 2008. [9] McSween, H. Y. et al., JGR 118, 2013.