

Regulation of Boreal soil respiration: evidence from a Swedish forest fire chronosequence.

Kelly Mason (1), Simon Oakley (1), Nicholas Ostle (2), Thomas DeLuca (3), María Arróniz-Crespo (4), and Davey Jones (4)

(1) Centre for Ecology & Hydrology, Lancaster, UK (kelson@ceh.ac.uk), (2) Lancaster Environment Centre, Lancaster University, Lancaster, UK, (3) School of Environment and Forest Sciences, University of Washington, Seattle, USA, (4) School of Environment, Natural Resources and Geography, Bangor University, Bangor, UK

Globally, boreal forests occupy 14% of total land surface and are important regions for biogeochemical cycling of carbon (C) and nitrogen (N)¹. They are recognised as stores of terrestrial C and reservoirs of uniquely adapted biodiversity. Like many forest biomes, boreal forests are under pressure from climate change and growing populations. C and N cycling in the boreal region is strongly influenced by the occurrence of forest fires, which return large amounts of stored N back into an otherwise N limited system². The frequency and intensity of boreal forest fires is expected to increase in the next century as the global atmosphere warms and N deposition continues to increase due to human activities^{3,4}. Despite the importance of these ecosystems, there is limited knowledge of the effects of interactions between climate and N limitation on soil respiration and feedbacks of carbon dioxide (CO₂) and other greenhouse gases (GHGs) to the atmosphere.

In this research we aimed to improve understanding of how changes in the frequency and intensity of fires might alter N and C dynamics in the boreal region. Specifically, we examined the degree of N limitation and the temperature sensitivity of GHG (CO₂, N₂O and CH₄) fluxes from soils underlying carpets of *Pleurozium schreberi*, a feather moss known to form important symbiotic relationships with N-fixing cyanobacteria¹, from a fire chronosequence of Swedish boreal forest stands. We hypothesised that: (1) soil respiration in late succession ecosystems is most N limited due to high soil C:N ratios and high microbial biomass; and (2) early succession forest soil respiration is most temperature sensitive due to higher N availability and higher bacterial biomass.

To test these hypotheses, we took soil cores from a chronosequence of six sites in the northern boreal region of Sweden, including two early, two mid, and two late succession stands. These sites are dominated by mixed *Pinus sylvestris* and *Picea abies*, with an understory dominated by ericaceous dwarf shrubs and feather mosses. Soil properties including microbial community composition, C:N, pH, and extractable NH₄ and NO₃ were measured and two microcosm experiments were conducted on cores incubated under controlled conditions. In the first experiment, ammonium nitrate (NH₄NO₃) fertilizer was applied and the dose-response of GHG emissions was measured over several weeks. Differences in fluxes between sites were observed in response to N additions, with greatest differences in N₂O emissions compared to CH₄ and CO₂. In a second experiment, respiration was analysed from cores incubated at different temperatures over two weeks and Q₁₀ values were calculated for the different sites. Q₁₀ values obtained were approximately 2.5-3.5, indicating higher sensitivity to rising temperatures in these soils than predicted in most climate models⁵. We will present how these differences in N limitation and temperature sensitivity are driven by differences in soil properties along the chronosequence.

References

- ¹ DeLuca *et al.* 2002. *Nature*. 419.
- ² Zackrisson *et al.* 2004. *Ecology*. 85.
- ³ Friedlingstein *et al.* 2006. *JClimate*. 19.
- ⁴ Dentener *et al.* 2006. *Global Biogeochem Cy*. 20.
- ⁵ Kilpeläinen *et al.* 2010. *Climatic Change*. 103.