

Statistics of rogue waves in random sea states and their dependence on inverse scattering data.

Constance Schober

University of Central Florida, Mathematics, Orlando, United States (drschober@gmail.com)

Extreme waves are frequently modeled using the nonlinear Schrodinger (NLS) equation and its higher order extensions (HONLS). In earlier work we introduced δ , the “splitting distance” between two consecutive simple points in the Floquet spectrum of the associated Zakharov-Shabaat problem of the NLS equation, as a measure of proximity to instabilities in the wavefield. As an alternative to the Benjamin-Feir index, the splitting distance can be seen as a measure of the localization of the energy in the wave field. In [1] we correlated the development of localized rogue waves in random sea states characterized by JONSWAP spectra with the splitting distance δ .

In [2] Sura shows that the kurtosis (κ) and skewness (s) of deep ocean field data obey the relationship $\kappa = 3/2s^2 + c$ which is not satisfied by Gaussian or double exponential noise. Here we show that sea states modeled using the HONLS equation and random phase JONSWAP initial data exhibit a significant deviation from Gaussianity and satisfy Sura’s relation between the skewness and kurtosis. For the HONLS equation, δ is not invariant in time. We determine both the initial splitting distance δ_0 and the time averaged splitting distance δ_{avg} . We find that the maximum strength, skewness, and kurtosis of the sea state are strongly dependent on δ_{avg} . Using the Mori-Janssen relationship between kurtosis and \mathcal{P} , the probability a wave height exceeds a given quantity, we determine $\mathcal{P}(\delta_{avg})$.

References

- 1 A.L. Islas and C.M. Schober, Predicting rogue waves in random oceanic sea states, *Phys. Fluids* **17** (2005)
- 2 P. Sura and S.T. Gille, Stochastic dynamics of sea surface height variability, *J. Phys. Oceanogr.* **40** (2010).