

Mapping saturated hydraulic conductivity in the presence of deterministic trends

Alexander Zimmermann (1) and Beate Zimmermann (2)

(1) University of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany

(alexander.zimmermann.ii@uni-potsdam.de), (2) Research Institute for Post-Mining Landscapes, Finsterwalde, Germany

The saturated hydraulic conductivity (K_s) is an important soil characteristic. Accounting for K_s spatial patterns in distributed hydrological models can improve the model performance considerably. However, obtaining realistic fields of K_s is notoriously difficult because of the pronounced small-scale variability of this variable. In an attempt to adequately characterize K_s spatial variation in a tropical forest catchment, which features a high density of surficial flowlines, we applied a combination of two sampling approaches. At first, we conducted a classical nested sampling survey to assess the scales over which K_s varied in the target area. Next, we applied a purposive sampling strategy which considered hydrologic information on the temporal frequency of overland flow occurrence in the flowlines. The nested sampling approach revealed the dominance of small-scale variability, which is in line with previous findings. Data from the purposive sampling, however, indicated the presence of a strong spatial gradient: surface K_s was extremely low in flowlines and approached values similar to the spatial mean of K_s at a distance of 10 m to flowlines. To build a geostatistical model of the spatial variation of K_s we combined the data from both nested and purposive sampling and used a linear mixed modelling framework where the data are modeled as the additive combination of fixed effects, random effects and independent random error. We ascribed the fixed effects to an external drift variable, the distance to flowline of each point in space. Random effects and independent random error are described by the variogram. In this contribution we will discuss the hydrological relevance of the modelled K_s pattern using probability maps of K_s exceedance for a range of rainfall intensities.