

Long-term measurement of aerosol chemical composition in Athens, Greece.

Despina Paraskevopoulou (1,2), Eleni Liakakou (1), Christina Theodosi (2), Evangelos Gerasopoulos (1), Nikolaos Mihalopoulos (1,2)

(1) Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and Vas. Pavlou, 15236, P. Penteli, Athens, Greece, (2) Environmental and Analytical Chemical Division, Department of Chemistry, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece

The collection of our samples was conducted for a period of five years (2008 – 2013) in Athens, Greece. The site is situated at the premises of the National Observatory of Athens on Penteli Hill, northeast Athens suburbs, and is considered an urban background station. The aim of our study was a first long-term estimation of the chemical mass closure of aerosol. For the purposes of the study, we applied three filter samplers during the sampling period: two Partisol FRM Model 2000 air samplers (one of them collecting PM₁₀ and the other PM_{2.5} fractions of aerosol) and one Dichotomous Partisol auto-sampler (with PM_{2.5} and PM_{2.5–10} inlet). Aerosols were collected on Whatman QM-A quartz fiber filters and the mass of the collected samples was estimated by weighing the pre-combusted filters before and after sampling, under controlled conditions, using a microbalance. All quartz filters were analysed for organic (OC) and elemental carbon (EC) by a thermal – optical transmission technique. The concentration of water soluble organic carbon (WSOC) was defined for each filter using a total organic carbon analyzer, while the content in main water soluble ions (Cl[–], Br[–], NO^{–3}, SO^{–2}₄, PO^{–3}₄, C₂O^{–2}₄, NH⁴⁺, K⁺, Na⁺, Mg⁺⁺, Ca⁺⁺) was determined by ion chromatography. Additionally the filters were analyzed for trace metals by inductively coupled plasma optical emission spectrometry (ICP-OES). Aerosol chemical mass closure calculations were conducted for the PM_{2.5} fraction. The area of Athens is characterized by aged aerosol that can originate from the marine boundary layer, the European mainland and occasionally from North African desert areas. The contribution of dust and particulate organic matter on PM levels was estimated taking into consideration the location of the sampling site, while identification and evaluation of sources was performed. Additionally, non-sea salt concentrations of the main ions were estimated to complete the chemical closure in the extended area. According to this first analysis of the aforementioned acquired data, the dominant components of fine particulate matter were carbonaceous aerosol, dust and sulfate anions. The average mass concentration of PM_{2.5} was 20 µg/m³ for the whole studied period while, about 23%, 20% and 15% of the total mass is due to POM, dust and nssSO^{–2}₄, respectively. As a result of the mass closure exercise the measured PM_{2.5} fraction, collected in the studied site, was feasible to be reconstructed to a large extent.