

Fluxes of carbon and nutrients to the Iceland Sea surface waters and inferred primary productivity and stoichiometry

Emil Jeansson (1), Richard Bellerby (1,2), Helene Frigstad (3), Sólveig R. Ólafsdóttir (4), Jón Olafsson (4,5), and Ingunn Skjelvan (1)

(1) Uni Climate, Uni Research AS and Bjerknes Centre for Climate Research, Bergen, Norway (emil.jeansson@uni.no), (2) Norwegian Institute for Water Research, Bergen, Norway, (3) Norwegian Environment Agency, Oslo, Norway, (4) Marine Research Institute, Reykjavik, Iceland, (5) Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland

Fluxes of carbon and nutrients to the upper 100 m of the Iceland Sea are evaluated. The study utilises hydrochemical data from the quarterly sampled Iceland Sea time-series station (68.00 °N, 12.67 °W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100-200 m), we calculate monthly deficits in the surface, and use this to deduce the fluxes into and out of the surface layer that affect the deficit: vertical mixing, horizontal advection, air-sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in September, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 2.3 and 0.41 mol m⁻² yr⁻¹, respectively, the annual air-sea uptake of atmospheric CO₂ is 4.4 mol m⁻² yr⁻¹, and the net annual flux due to biological activity is calculated to 5.5 mol C m⁻² yr⁻¹, and 0.37 mol N m⁻² yr⁻¹. We also deduce seasonal NCP by summing up the months with a positive drawdown of DIC, and similar for new production by summing up the months with positive nitrate drawdown. We quantify these to 5.6 mol C m⁻² yr⁻¹, and 0.51 mol N m⁻² yr⁻¹, which gives a ratio markedly higher than Redfield. Results for phosphate and silicate are also shown and discussed, as are the stoichiometry of the all deduced fluxes.