

Mid term monitoring of heavy metals content in soils of Mediterranean coastal wetlands. La Albufera de Valencia Natural Park, Spain

Juan Antonio Pascual-Aguilar (1), Vicente Andreu (1), and Eugenia Gimeno-García (2)

(1) Environmental forensic and Landscape Chemistry Group, Centro de Investigaciones sobre Desertificación-CIDE (CSIC-UV-GV), Moncada, Spain, (2) Fundació General Universitat de València, Moncada, Spain

Coastal wetlands, in general, and Mediterranean ones, in particular, suffer from different anthropogenic pressures that may affect their intrinsic environmental and ecological functions. Most, if not all, Mediterranean wetlands are not natural spaces where preservation of habitat and wildlife is the only management policy achieved, but rather their territory is a combination of land units with different activities and influences, such as farming, environmental protection and connectivities with urban and industrial areas. Therefore, the need of periodical monitoring is required whenever pressures and environmental health of wetlands is assessed, particularly of those processes that affect the interconnection of environmental compartments involving water, soils and biota. In agro-ecological protected wetlands soils play an important role because they are potential sources of pollutants due to farming practices. In this case, presence of heavy metals in soils is an indicator of both environmental health and anthropogenic direct (farming activities) and indirect (neighbour urban areas) pressures.

In this work a mid term (17 year) monitoring of seven heavy metals (Cd, Co, Cr, Cu, Pb, Ni and Zn) in soils of coastal Mediterranean wetlands (La Albufera Natural Park, Spain) are analyzed. Two monitoring campaigns were achieved in 1991 and 2008. In both cases the same 20 points were visited which were distributed in the natural park according to four different sectors of potential anthropogenic pressure and land use. At each point two soil samples were collected at different depths (0 to 20 cm and 20 to 40 cm). The selected metals were analyzed to determine its total and extractable fractions by treatment with EDTA. Atomic Absorption Spectrometry, using graphite furnace when necessary, was used for the determination of metals.

In general, there is a reduction of metal contents in the study area in both dates. The trend of metals according to average concentration (mg/kg) in 1991 and 2008 were Zn (60.38) > Pb (47.50) > Ni (29.10) > Cu (25.82) > Cr (16.04) > Co (11.40) > Cd (0.50) and Zn (68.82) > Cr (48.12) > Cu (34.93) > Pb (24.60) > Ni (22.49) > Co (6.58) > Cd (0.42), respectively. Average increments were found in Zn, Cr and Cu, which are related with high point (individual location and/or sector) values rather than a general trend in the area. Maximum concentrations were obtained for Zn (120.38 mg/kg and 230.05 mg/kg in 1991 and 2008 respectively), Pb (72.31 mg/kg and 64.90 mg/kg), Ni (43.07 mg/kg and 43.74 mg/kg), Cu (55.83 mg/kg and 109.91 mg/kg) and Cr (36.10 mg/kg and 254.93 mg/kg).

There is a clear spatial trend in the distribution of heavy metals in both dates, higher values were found in the northern sector of the Natural Park, which is a neighbour sector of the large city of Valencia, and in points close (less than 500 m) to main roads, suggesting the influence of external factors in the distribution of pollutants.

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation through the project CONSOLIDER-INGENIO 2010 (CSD2009) and by the Ministry and the European Regional Development Fund (ERDF) (projects CGL2011-29703-C02-00, CGL2011-29703-C02-01, CGL2011-29703-C02-02).