

Joint inversion of gravity and seismic tomography data for modelling magmatic massive sulphide bodies

Angela Carter-McAuslan, Peter Lelièvre, and Colin Farquharson

Memorial University of Newfoundland, Department of Earth Sciences, St. John's, NL, Canada

Joint inversion of multiple geophysical data sets containing complimentary information about the subsurface has the potential to significantly improve inversion results by reducing the non-uniqueness of the inverse problem. One of the challenges of joint inversion is coupling the multiple physical property models. In this work, we investigate the fuzzy c-means clustering approach to lithologically couple seismic velocity and density in joint inversions of first-arrival traveltimes and gravity data.

We conducted a suite of joint inversion tests on synthetic data generated from a geologically realistic model based on the Voisey's Bay Eastern Deeps magmatic massive sulphide deposit in Labrador, Canada. There is a known relationship between seismic velocity and density for the silicate rocks and sulphide minerals involved; this lithological relationship was used to design a clustered coupling strategy in the joint inversions. The tests clearly demonstrate the benefits of joint inversion using fuzzy c-mean coupling. This work also demonstrates the effects of including inaccurate a priori physical property information and we suggest approaches to assess whether such inaccurate information may have been used.