

Multifractal based Complex Network of Coherency Spectrum (M-CNetCSpec) Application to Multi-dimensional Climate Data as a Hypersurface Morphology Analysis

Kevin Oluoch (1,2), Norbert Marwan (2), Martin Trauth (1), and Juergen Kurths (2)

(1) University of Potsdam, Institute of Earth and Environmental Science, Graduate School GRK1364, Berlin, Germany
(oluoch@pik-potsdam.de), (2) Potsdam Institute for Climate Impact Research, Research Domain IV: Transdisciplinary Concepts and Methods, Potsdam, Germany

The complex network approach to data analysis and modeling is currently making big strides in bridging different fields in science, geosciences included. This work introduces a now completed novel method known as a Multi-fractal based Complex Network of Coherency Spectrum (M-CNetCSpec). The systematic method components is based on the three main components of a complex system namely, components, interactions and emergence. System components refers, interaction is concerned with the multi-scale and non-linear decomposition technique and re-assemblage into a single adjacency matrix while emergence is concerned with the outcome of the complex network measures and their interpretation. Currently, we have worked extensively with a large dataset from the Tropical Rainfall Measuring Mission (TRMM), having wide coverage and high spatio-temporal resolution. The new insight into the exiting network propagation and structures will be presented with this work.