

Validation and application of Open-Path FTIR in combination with a micrometeorological transport model for measuring CH₄, NH₃, and N₂O fluxes from open digestate storage lagoons

Jan Reent Köster (1,2), Andreas Pacholski (3,4), Klaus Dittert (5), David W. T. Griffith (6), Owen Tom Denmead (7,8), Deli Chen (7), Henning Kage (3), and Karl-Hermann Mühling (1)

(1) Institute of Plant Nutrition and Soil Science, Kiel University, D-24118 Kiel, Germany (jan.reent.koester@nmbu.no), (2) Department of Environmental Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway (present address), (3) Institute of Crop Science and Plant Breeding, Kiel University, D-24118 Kiel, Germany, (4) Graduate School/Inkubator, Leuphana University Lüneburg, D-21335 Lüneburg, Germany, (5) Department of Crop Science, Section of Plant Nutrition and Crop Physiology University of Goettingen, D-37075 Goettingen, Germany, (6) School of Chemistry, University of Wollongong, Wollongong, Australia, (7) School of Land and Environment, The University of Melbourne, Melbourne, Australia, (8) CSIRO Land and Water, Canberra, Australia

Biogas production for generating electricity is explicitly promoted in several European countries as a regenerative and greenhouse gas (GHG) saving energy source. However, also during biogas production significant GHG (especially methane, CH₄, and nitrous oxide, N₂O) and ammonia (NH₃) emissions occur and reduce not only GHG savings from biogas energy but also pose additional threats to natural ecosystems by nitrogen deposition. Anaerobic digestates (AD), the residues of the biogas fermentation process, are usually stored in large tanks or lagoons for several months prior to land spreading as organic fertilizers. When uncovered, these stores pose high potential for NH₃ and GHG emissions. However, measurements of these emissions are methodically challenging. In the present study the use of Open-Path Fourier Transform infrared spectroscopy (FTIR) as a non-invasive remote sensing approach for determining CH₄, NH₃, and N₂O emissions from two open AD storage lagoons with a surface of 1100 – 1200 m² in combination with a backward Lagrangian Stochastic dispersion technique (bLS) was validated and deployed.

CH₄, NH₃, and N₂O concentrations were measured on a 30 to 50 m optical path by OP FTIR, while wind speed and direction were monitored by a sonic anemometer. Air temperature and pressure were logged as well. Three gas release experiments were conducted, in which N₂O or NH₃, respectively, was released from a grid at the lagoon surface, and the gas recovery rate of the bLS technique was determined for validation of the applicability of the combination of FTIR and bLS under local conditions not optimal for the application of micrometeorological techniques. In these experiments the ratio between calculated (Q_{bLS}) and actual flux (Q) was 0.89 (± 0.04 ; n = 24), 1.14 (± 0.13 ; n = 23), and 1.23 (± 0.1 ; n = 59). Over all three release experiments the (Q_{bLS}/Q) ratio was 1.13 (± 0.17 ; n = 106).

Trace gas emissions from both lagoons were dominated by CH₄, which was found up to 47.6 kg CH₄ C day⁻¹ from one of the lagoons. NH₃ emissions were up to 4.9 kg NH₃ N day⁻¹. N₂O emissions were only detectable during summer with up to 0.7 kg N₂O N day⁻¹. Destruction of a naturally occurring surface crust by mechanical homogenization resulted in immediate high CH₄ peaks, but did not affect total CH₄ release. In contrast, NH₃ emissions were raised by up to six times and remained elevated for the following days, while N₂O fluxes increased by about 35%. CO₂ equivalent weighted emissions from the lagoons per unit electricity produced by the corresponding biogas plant ranged between 7 and 218% (half-fermented AD pumped into lagoon due to problems in fermenter) of the CO₂ emissions arising from utilization of equal amounts of natural gas, depending probably on factors like season, biogas plant, and lagoon filling level. A full assessment of GHG emissions from biogas production would require a more systematic investigation. Nevertheless, the high trace gas emissions during AD storage clearly counteract the purpose of biogas energy, which is mainly motivated by a reduction of GHG emissions. Gas tight covers on AD storage facilities are strongly recommended to reduce these GHG emissions and to raise the efficiency of biogas energy.