

Long-term ^{15}N tracking from biological N fixation across different plant and humus components of the boreal forest

Maria Arroniz-Crespo (1), David L. Jones (1), Olle Zackrisson (2), Marie-Charlotte Nilsson (2), and Thomas H. DeLuca (3)

(1) Environment Centre Wales, Bangor University, Bangor, Gwynedd, LL57 2UW, UK, (2) Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden, (3) School of the Environmental and Forest Sciences, University of Washington, Seattle, Washington, United States of America

Biological N₂ fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The $\delta^{15}\text{N}$ signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N₂ fixation to $\delta^{15}\text{N}$ signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tracking of labelled $^{15}\text{N}_2$ across the humus layer, seedlings of the tree species *Pinus sylvestris*, two common dwarf shrub species (*Empetrum hermaphroditum* and *Vaccinium vitis-idaea*) and the feather moss *Pleurozium schreberi*. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% $^{15}\text{N}_2$ headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of $\delta^{15}\text{N}$ signature of the ^{15}N -enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since $^{15}\text{N}_2$ enrichment some of the label ^{15}N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled $^{15}\text{N}_2$ from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistent relationship through time between increments of $\delta^{15}\text{N}$ signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance $\delta^{15}\text{N}$ that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub *Vaccinium vitis-idaea* and the pine seedlings when comparing across plots and years.