

Gravity Induced Ordering of Frictional Fingers

Jon Eriksen (1,3), Bjørnar Sandnes (2), Renaud Toussaint (3), Knut Jørgen Måløy (1), and Eirik Flekkøy (1)

(1) Institute of Physics, University of Oslo, Oslo, Norway, (2) Multidisciplinary Nanotechnology Centre, Swansea University, Swansea, UK, (3) École et observatoire des sciences de la Terre, Université de Strasbourg, Strasbourg, France

Experiments on confined two-phase flow systems, involving air and a dense suspension, have revealed highly non-trivial flow morphologies. As the air displaces the suspension, the grains that make up the suspension tend to accumulate along the interface, and can build up force chains that jam the accumulated region. This dynamics will generate "frictional fingers" of air coated by a region of densely packed grains. The fingers have a characteristic width that balances surface tension and frictional forces of the densely packed grains. When these fingers grow under the influence of gravity, they can align either horizontally or vertically, or grow in a random isotropic fashion. The transition between the different modes of finger growth depends on the density of grains, and the gravitational force component. We present an analytic model to account for the transitions between the modes. We further present a numerical scheme that enables us to simulate the dynamics of the process. The numerical and analytic results are in good agreements with the experimental findings.

Finally we show how this process could explain patterns that emerge naturally in early stages of dyke formation. These patterns are formed when hot fluid displaces partly molten rocks and packs the hard mineral grains composing it together, thereby forming finger structures that remain frozen in the dyke walls.