Geophysical Research Abstracts Vol. 16, EGU2014-14769, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

k-filtering applied to *Cluster* density measurements in the Solar Wind: Early findings

Lauren Jeska, Owen Roberts, and Xing Li

Department of Mathematics and Physics, Aberystwyth University, United Kingdom (laj12@aber.ac.uk)

Studies of solar wind turbulence indicate that a large proportion of the energy is Alfvénic (incompressible) at inertial scales. The properties of the turbulence found in the dissipation range are still under debate \sim while it is widely believed that kinetic Alfvén waves form the dominant component, the constituents of the remaining compressible turbulence are disputed. Using k-filtering, the power can be measured without assuming the validity of Taylor's hypothesis, and its distribution in (ω, \mathbf{k}) -space can be determined to assist the identification of weak turbulence components. This technique is applied to *Cluster* electron density measurements and compared to the power in $|\mathbf{B}(t)|$. As the direct electron density measurements from the WHISPER instrument have a low cadency of only 2.2s, proxy data derived from the spacecraft potential, measured every 0.2s by the EFW instrument, are used to extend this study to ion scales.